
Yet Another Python Book
Release 0.5beta

Tony Jenkins

Apr 09, 2024

CONTENTS

1 Greetings! 1
1.1 About this Book . 1
1.2 Design Decisions . 2
1.3 Programming . 3
1.4 Assumptions . 4
1.5 Programming Languages . 5
1.6 Takeaways . 8

2 Before We Start 9
2.1 Instructions . 9
2.2 Values and Types . 11
2.3 True and False . 11
2.4 Binary . 13
2.5 How Computers Work . 15
2.6 Text Files . 16
2.7 Takeaways . 18

3 Getting Stuff Together 19
3.1 A Note on Operating Systems . 20
3.2 Getting Python . 21
3.3 Choosing and Getting an IDE . 22
3.4 Other Tools . 27
3.5 Takeaways . 27

4 Getting Started 29
4.1 Three Programs . 30
4.2 Programming in a Good Place . 32
4.3 Takeaways . 34

5 Somewhere to Start 35
5.1 Creating Values . 36
5.2 Values and Types . 37
5.3 Values and Variables . 48
5.4 Input and Output . 49
5.5 Takeaways . 51

6 When Things Go Wrong 53
6.1 A Simple Error . 53
6.2 Handling an Exception . 55

i

6.3 Another Exception . 56
6.4 Exceptions are Good . 58
6.5 More Errors . 59
6.6 Takeaways . 59

7 Staying in Control 61
7.1 Values in Range . 61
7.2 Flow of Control . 63
7.3 Non-Linear Programs . 67
7.4 Repeating Yourself . 68
7.5 Pulling It Together . 73
7.6 Takeaways . 76

8 The Wheel. Do Not Reinvent 79
8.1 The Standard Library . 80
8.2 The Python Package Index . 85
8.3 Takeaways . 86

9 Keeping it Simple 87
9.1 Code is Crafted . 88
9.2 Code Reuse . 90
9.3 Functions Explained . 93
9.4 A Simple Game . 97
9.5 Using Functions . 110
9.6 Takeaways . 111

10 Collecting 113
10.1 Looking at Lists . 114
10.2 Trying Tuples . 123
10.3 Seeking Sets . 125
10.4 Discovering Dictionaries . 126
10.5 Takeaways . 129

11 Fun with Files 131
11.1 Finding Files . 132
11.2 Reading Files . 133
11.3 Writing Files . 136
11.4 Takeaways . 140

12 Those Little Details 141
12.1 Ternary . 141
12.2 F-Strings . 142
12.3 Command-Line Arguments . 144
12.4 None . 146
12.5 Passing . 149
12.6 Custom Exceptions . 150
12.7 List Comprehensions . 151
12.8 Takeaways . 153

13 The End of the Book 155
13.1 Programming, not Python . 155
13.2 Keep Up To Date . 156
13.3 Keep Sharp . 156

ii

13.4 Important Reading . 157
13.5 AI and Programming . 157
13.6 Takeaways . 158

Glossary 159

Colophon 163

Image Credit 165

Credits 167

Index 169

iii

iv

CHAPTER

ONE

GREETINGS!

This is a book about programming. Well, this is a book that is sort of about program-
ming.

Let’s start by considering what this book is, what it is not, and why it is like that.

See also:

This book is also available online. The content should be the same. Go here: http://
www.tony-jenkins.org.uk/.

1.1 About this Book

This is a book about the Python programming language. Sort of.

This is more a book that introduces the main ideas of programming, and uses Python
as the language that illustrates the main ideas.

To be very clear from the outset:

Important: You do not learn to program by reading a book.

Seriously. Programming is a skill, and it is a skill that takes many years to master prop-
erly. The purpose of this book is to put you in a position where you understand enough
that you can start on that journey.

Suppose you wanted to learn to ride a bicycle, juggle, or repair lawnmowers. You would
not expect to be able learn to do any of these things well just by reading a book. (And
there are very few books teaching you how to do these things anyway, which is probably
significant.) To take just the first - if you wanted to learn to juggle you would first try to
get the basics. You might watch some YouTube videos, or get help from someone who
already had the skill. Then you would practice, and practice some more. Eventually,
you would get to the point where you felt you were a competent juggler.

Programming is like that. Every programmer is constantly learning. Even after 30
years or more experience, programmers are still learning. This book is aimed at get-
ting you to the point that you can start this learning.

This chapter sets the scene for the book, and hopefully convinces you that you are in
the right place.

1

http://www.tony-jenkins.org.uk/
http://www.tony-jenkins.org.uk/

Yet Another Python Book, Release 0.5beta

1.2 Design Decisions

There are usually many ways to write a computer program. Some are just as good as
others, but sometimes an experienced programmer will have some sort of instinct that
one is best. Or it could just come down to experience. Whatever, design decisions are
made.

Likewise, there are many ways to write a book about computer programming. Let’s start
by going over the design decisions behind this book.

This book is the result of many years watching (and sometimes even helping) people
learn to program. Most of them have got there in the end, but it can be a rocky road,
and sometimes a shove is needed.

The key design ideas for this book, in roughly their order of importance, are:

Dynamic
Paper books (pbooks), in the tech world at least, are dead. Tech moves so fast that it
is virtually impossible to produce a traditional pbook that covers current versions
of tools and current ideas in methods. This book isn’t actually a book in the tradi-
tional sense of what that means. It is a set of web pages, generated from a bunch
of text files. The content can be changed in minutes, and a new version can be de-
ployed in seconds. Pressing another button can cause a PDF or e-reader version to
pop into existence.

Just Enough
This book does not cover all the small details of a programming language. There
is official documentation for that. When a new programmer starts there is no
need to worry about all those fiddly little details that only come into play now and
again. Why worry about a technique or feature that you’ll need very rarely? So,
some things are deliberately missed out (although there may be pointers to where
the gory details can be found).

Pythonic
The programming language used here is Python. Python is currently one of the
most popular languages around, and is the only really sensible choice for a first
language to learn. The aim, though, is to use Python as Python was intended. To be
Pythonic, as it were. This means that at various times we will talk about Pythonic
things that might not exist (or be as important) in other languages.

One Way
An important aspect of the original design of Python was that there should always
be one, and ideally just one, way to do something. That has maybe slipped in re-
cent versions. Better ways of implementing some features have been added, but
the only ones remain for backwards compatibility. But this book will stick to pre-
senting one way to do something, and that will probably be the most recent, and
therefore the best, way. If there happen to be more, you’ll find them later. There
might again be pointers.

Free, as in Beer
Finally, this book is free, as in beer. You are welcome to use it for anything you
want to. The text files can be found on GitHub, and all the tools needed to build
the HTML and PDF are free.

This book will also be, in places, somewhat opinionated. No apologies are made for this,

2 Chapter 1. Greetings!

Yet Another Python Book, Release 0.5beta

because the opinions are correct.

1.3 Programming

Above all, this book is about programming, and the things that programmers do. Before
starting to learn how to do something it obviously makes sense to learn what that thing
is. What is programming all about? What does a programmer actually do? And for that
matter, isn’t it all AI these days9?

A popular image is that programming is a very solitary occupation, with a program-
mer involved in some sort of late night mortal combat, trying to bend the behaviour of
a computer to their will. Well, it does feel like that sometimes, but more often program-
ming is a social occupation, working with others in a creative environment to produce
something cool. So this book will occasionally step away from the details of Python to
go into what programmers do.

Let’s be clear about this. Programmers use Google. They use StackOverflow. They wan-
der across the office to ask a colleague to take a look at their code. They use version
control tools. They chat on Slack, Teams, and even Discord. They explain programming
problems to small plastic ducks10. All of these habits, and there are more, make them
more productive. While the details are probably beyond the scope of this book, it is so
important to know that they exist, and that they are basic parts of the way program-
mers work. Very often, when a new programmer sees a Senior Developer fix a problem,
apparently by magic, all that Senior Dev knew was what to Google. Really.

To put it another way, what experienced programmers have is, ah, experience. This
means that they have seen most of the common problems before, and know how to
solve them. In the trade, this is called abstraction - the ability to take a solution to a
problem you have seen before, recognise that a “new” problem is actually the old one,
and map the solution over. This experience comes with time, and comes from working
with other programmers. Another reason why programming is often a social process.

Important: If you know experienced programmers, learn from them. You might have
to buy them a coffee, but that will be a good investment in the long run.

9 The short answer to that question is, of course, that no-one knows. Sure, AI could write most of the
programs in this book, and it would do a reasonably good job. But would we all be happy relying on software
and programs written by an AI? It would seem to be a pretty good idea to have someone look over what the
AI is doing, to say the least!

10 Seriously. It’s called Rubber Duck Debugging11 and is a very useful technique. It works with penguins,
elephants, and bears too.

11 https://en.wikipedia.org/wiki/Rubber_duck_debugging

1.3. Programming 3

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Yet Another Python Book, Release 0.5beta

1.4 Assumptions

So, how to get this experience? To make sure that we are starting from a good place,
this book will make some assumptions. Specifically, we want to concentrate on writing
programs here. We don’t want to be fighting the computer. We therefore need to be
able to carry out some basic tasks that any PC user should be able to do.

Important: This aspect is often skipped over in introductory programming courses.
It’s here for a reason - don’t be tempted to skip it here! If you are going to make the
computer do something useful, with a program, there’s a whole bunch of things you
need to be able to do first. Check out the list below!

Note: We are operating system agnostic here. Python works just fine on any modern
operating system, so we are not going to tie ourselves to anything. More on this later.

This book assumes that you have a PC or laptop available. It doesn’t matter what oper-
ating system it uses (and we will not worry about OS issues much), and it does not have
to be especially powerful. But you need to be able to use it. Specifically, we will assume
that:

• You understand how files are organised.

• You can create a sensible structure of folders (directories) to store your files, and
know why this is important.

• You can carry out basic file operations, such as renaming, deleting, and so on.

• You can find files if you have forgotten where they are stored.

• You are comfortable installing software, and have the permissions to do so.

• You have an Internet connection, so that you can download the software you need.

• You understand that backups are important, and have access to some solution that
will keep your files safe!

Warning: Read the last one above again. Always make sure you have backups. You
can never have too many backups. And, most important of all, make sure you can get
files back from backups! Losing work through not having a working backup solution
can be costly, and painful.

It would also be good to assume that you have some experience of the command line.
This is likely if you are using Linux, possible if you have a Mac, but unlikely if you have
Windows. Some of the details will be covered later, just in case.

This needs to be set out because the ways in which we use PCs and laptops have changed
hugely in the last few years. The arrival of PCs in the home has meant that to many peo-
ple a computer is just an appliance. It’s like a fridge, and you can use a fridge without
any idea of how it actually works. This is fine as long as all you want to do on the PC
is write a letter, read the news, stream the latest Justin Bieber video, or play a game. If

4 Chapter 1. Greetings!

Yet Another Python Book, Release 0.5beta

you want to be able to program that computer to do something new, you need to under-
stand something about how it works. Or, at this point, you need to be willing to learn
something about how it works.

YouTube is full of videos explaining these things if you need a refresher. We’ll talk more
about them later.

1.5 Programming Languages

To write a program, we need a programming language. There have been many pro-
gramming languages over the years. Some have had their time and fallen into obscu-
rity, others are just beginning to gain traction and users. Deep down, though, they are
all basically the same. A programmer who learned, say ALGOL1 in the 1970s could eas-
ily be working happily with Java2 today, and also looking to upskill to Golang3 in the
next few months. Some languages have a habit of clinging on to life even when past
their prime (we’re looking at you, COBOL4), with programmers always needed to sup-
port business-critical systems. Some languages, sadly, never really find their niche and
just fade away.

This is not to say that all programming languages are equal. There are some fundamen-
tally different designs out there. But the underlying concepts are basically the same,
and those are the concepts that concern us here. Armed with a good knowledge of the
basic ideas it should be possible to pick up any programming language, even the ones
that haven’t been designed yet.

Note: If you like analogies, we could say that all cars are basically the same. But a
small Kia is different to a mid-range Audi is different to a Bugatti. They all have their
uses. Some are more popular than others. Some have fallen into misuse. New ones are
always interesting. Get the idea?

Taking the analogy a bit further, many languages have a “niche”, or an application
where they are most suitable. Python is really good for rapid development when the
requirements of a system are changing daily. You wouldn’t use Java in that sort of en-
vironment (unless you hated yourself), but you might decide to engineer the eventual
solution with Java, once requirements are well understood. You wouldn’t write an oper-
ating system in Python, you would use C. But you wouldn’t use C to quickly put together
an app for your web pages. To use a cliche, it’s “horses for courses”.

In addition, many programming languages do have a sense of style and idiom. This
relates to how the language is used (or how programs are expressed using it). There are
also conventions that determine how programmers structure their program code, and
how they use the language in other ways. It is important to understand these, and to
try to work within each languages’s conventions. This is similar to learning any foreign
language - it would be possible to translate, say, French into English word-for-word,
and the result would be understandable, but would probably seem very strange. A much

1 https://en.wikipedia.org/wiki/ALGOL
2 https://en.wikipedia.org/wiki/Java_(programming_language)
3 https://en.wikipedia.org/wiki/Go_(programming_language)
4 https://en.wikipedia.org/wiki/COBOL

1.5. Programming Languages 5

https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/COBOL

Yet Another Python Book, Release 0.5beta

better translation could be achieved by understanding English, its idioms, and its use.
That is why we bother to learn foreign languages!

Important: This book will follow the standard conventions for Python, which are set
out in a document called PEP-85. Very different conventions would apply if we were
using Java. And they would be different again if PHP were the language of choice.

There are many surveys of the current popularity of programming languages12. This
is all a bit artificial, because, as noted above, some languages are more suited to cer-
tain applications, and some applications are more widespread than others. The top five
languages in these surveys, though, are usually fairly consistent, although the order
changes. Alphabetically, they are:

• C++

• C#

• Java

• JavaScript

• Python

All these languages are available free, and there are extensive free tools, tutorials, and
other docs. But where should a new programmer start? When picking a first language
to use or learn, we can reason as follows.

1. JavaScript is tightly tied to the Web, and requires knowledge of web languages like
HTML and CSS. It is also usually used with higher level frameworks like React and
Vue, which change rapidly. For both these reasons it is not a good choice for a first
language.

2. C# and Java are basically the same language, and share much with C++. All are
object-oriented, and are good all-rounders. There are a lot of object-oriented con-
cepts that need to be understood before they can be used effectively, and this
hugely increases the amount that must be learned. For that reason alone, they
are not a good choice.

3. Python is also object-oriented but, unlike Java, can be used sensibly without ob-
jects. It is a scripting language, suitable for rapid development. It is possible to
write useful, even interesting, programs using a small amount of code. It is there-
fore the best choice.

There has been much debate over the years over the first language to learn. Wars have
probably been fought over less. But at the moment, Python is the best choice.

5 https://peps.python.org/pep-0008/
12 Amusingly (or depressingly, depending on your point of view), these lists often include things that

aren’t programming languages, such as HTML, CSS, or SQL.

6 Chapter 1. Greetings!

https://peps.python.org/pep-0008/

Yet Another Python Book, Release 0.5beta

1.5.1 Python

The language used in this book is Python. Python is a well-established language, hav-
ing been around for over 30 years now. It is very widely used in a wide range of ap-
plications. A solid all-rounder. As noted above, it is currently one of the most popular
programming languages, and therefore one of the most in-demands skills.

Python has many features that make it the best choice for our first language.

It is multi-paradigm.
Which means that it can be used in a bunch of different ways. This might not seem
important, but contrast this with other languages that support only one way of
working. In essence, it means we can start simple, and work up.

It is scripting language.
Which means that programs are just plain text files containing a sequence of in-
structions. A tool called the Python Interpreter takes these instructions, and exe-
cutes them. Simple.

It can be interactive.
Which means that the Python Interpreter can be used as an interactive tool to try
things out, check out ideas, and test programming snippets before using them for
real.

It is relatively small.
Which means that Python has a relatively small core, so we can hope to cover most
of it. But it also has an architecture that allows it to be extended with external
modules. Modules exist to do all sorts of cool stuff. It is massively extensible.

It has a simple straightforward syntax.
Which means that it is usually obvious what a program does. Quite often simply
reading a Python program out loud can explain what is going on.

Of course, it is not all good news. Python programs can be inefficient, and Python is
not the best language if you want to develop something that will run lightning fast in
an embedded system. But that’s not the point, and it’s not what Python is for.

Python is also intended to be fun. Its name is a nod to Monty Python’s Flying Circus6.
Many examples and tutorials draw from the Python canon. PyPi7, the standard repos-
itory of Python packages is sometimes affectionately called The Cheese Shop8. You
might notice the name of the GitHub repository where this book resides.

Python is completely free. And is also kind of cool.

6 https://en.wikipedia.org/wiki/Monty_Python
7 https://pypi.org/
8 https://www.youtube.com/watch?v=Hz1JWzyvv8A

1.5. Programming Languages 7

https://en.wikipedia.org/wiki/Monty_Python
https://pypi.org/
https://www.youtube.com/watch?v=Hz1JWzyvv8A

Yet Another Python Book, Release 0.5beta

1.6 Takeaways

Every chapter of this book will end with a sort summary of where you should be now.
After this section:

1. You should understand what this book is, and why it is like that.

2. You should have got hold of a suitable PC or laptop.

3. You should have the basic PC skills to manage files and folders.

4. You should understand why there are different programming languages.

5. You should know why the language we will use from now on is Python.

Right. Now to get this setup. We are starting slowly here. The plan is to head off any
problems that might get in the way once we start the serious programming work.

8 Chapter 1. Greetings!

CHAPTER

TWO

BEFOREWE START

At this point most books on programming leap right on in and start on the code. This is
fine, for some folks. But it means that sometimes people who are new around here can
get lost, because they don’t really understand the basic ideas. Often there are a many as-
sumptions being made about what you know before the coding start. And, guess what?
If you don’t know those things you very quickly get lost in a whole load of detail. You
off to a bad start from the get-go.

So in this chapter we’ll look a few basic ideas that underpin the whole business of pro-
gramming. These are mostly familiar, that you’ve probably met many times before, but
we need to think about them in a programming way. And these are all things that need
to be kept in mind as we carry on.

Tip: This chapter is short, but rather difficult to arrange in the best order. It might be
an idea to read through it quickly once, then again, more slowly!

Let’s start by thinking about what a computer program actually is.

2.1 Instructions

A computer program is just a set of instructions. The instructions tell17 the computer
how to carry out some task.

Try It!

After reading this section, try it! Write some instructions that someone should be
able to follow to carry out some everyday task. Making a coffee, boiling an egg, start-
ing a laptop and opening a Word file, walking from your place to the nearest corner
shop . . .

We are all used to following instructions. This might be to install some software, walk
to a new location in a new town, or make a new and interesting soup. This idea is so
common that most of us probably carry on without really thinking about what we’re

17 The word “tell” is not a very good one here, because it suggests that the computer as some awareness,
and knows what it is doing. Of course, this is not, yet, true. But as you start out in programming this can
be a useful way of understanding what is going on - you have a problem, and you are telling the computer
how to solve it.

9

Yet Another Python Book, Release 0.5beta

doing. In fact, in some cases we could follow some instructions without knowing what
the end result is intended to be!

Important: But remember that we are intelligent. Computers do not, yet, have intelli-
gence. If a human were given instructions that do not make sense, or even placed them
in peril, they would stop following them and seek corrections. Computers will just carry
on following their program (instructions), regardless, with no understanding of what’s
going on.

Some sets of instructions are presented in a formalised way according to some conven-
tions. That soup recipe, for example, will start by telling us what the recipe makes, and
what quantity. It will then list the ingredients, and then present the steps to take, one at
a time, in the correct order. It would be very strange to find a recipe that gave the steps
before listing the ingredients; it would be very awkward to use. Following a recipe also
assumes that we understand basic cookery terms (“mix”, “fry”, “stir”), probably some
abbreviations (“tsp” means “teaspoon”, “g” is “gram”), and that we follow it with some
intelligence (“fry until browned”, “add enough to thicken the soup”). Also, we would
query anything that seemed obviously wrong; we would not add 10 kilograms of flour
to thicken our soup, because that is clearly wrong (and probably a misprint for grams).

In general, any set of instructions contains the same elements. There is a sequence of
steps. And there is choice and there is repetition. While we usually follow instructions
from the first to the last (or from the top to the bottom), this is very rarely done without
one or the other of choice or repetition. In general, instructions contain:

Statements
A single instruction to do something: “Add the onions”, “Cross the road”, “Connect
the USB cable”.

Choice
Do one of a number of things (Statements), depending on what is observed. “Add
water if required”, “Cross the road if it is safe to do so”, “Connect the cable if an
external monitor is to be used”. What is done depends on whether something is
observed to be true or false.

Repetition
Do (a Statement) several times. “Add the flour until none remains”, “Walk uphill
until you reach the station”, “Click to install each of the updates that will down-
load”.

These three are the three most basic building blocks that make up any set of instruc-
tions. They are also the basic building blocks of a computer program.

When writing a program, a programmer supplies the computer with an ordered list of
instructions, along with the choices and repetitions that are needed to achieve a suc-
cessful result. The instructions are expressed in a programming language, like Python.

What do these instructions do? They store and manipulate values. If you think about
it, it’s amazing that these simple ideas can get us to complex software programs such
as modern games and office tools.

10 Chapter 2. Before We Start

Yet Another Python Book, Release 0.5beta

2.2 Values and Types

In many daily tasks we are involved with using and manipulating values.

Some of these values are numbers, or numeric. We might have to pay a bus fare, buy a
needed amount of something, or walk a certain distance. We are good at recognising
these values and carrying out tasks that involve them.

Generally to do this we think in units of tens, or fractions of tens, or multiples of 10.
Our currency is based on 10s, and we are used to working with 10s. While in the UK we
hold on to measuring longer distances in miles, we are increasingly using the metric
system, which is based on 10s.

Multiples of 10 (powers) are handy for bigger numbers: 102 is 100, 103 is 1000 and so
on. These numbers are all integers, or whole numbers. This idea is at the heart of the
metric system.

Fractions of 10 are used for more exact numbers, and numbers that represent part of a
whole. These are floating-point numbers. They can also be represented as powers: 10-1

is 0.1, or a tenth; 10-2 is 0.01, or a hundredth.

It’s often stated that our obsession with working in 10s like this comes from the usual
number of fingers we observe on our hands. This could be true, or it could just be that
this is something we are so used to doing, and something we are taught from an early
age, that it’s impossible to think of any other way.

Of course, we often use values that are not numbers. An example of another type of
value we use every day is characters. These could be letters, digits, punctuation marks,
or even emojis. A sequence of characters might represent a name or an email address.
They could also represent a phone number - in this case the characters are also digits,
but they are characters unless we plan to add up phone numbers, which is unlikely.
A single character can have meaning - a grade on a test, for example. A collection of
characters can also have a meaning, sometimes only if they are read in a particular
order. We might call such a collection a string; the order of characters in a string is
usually important.

So, we use values, and values have types. We carry out operations on values, and the op-
erations we can do are determined by the types. For example, we often add up numeric
values to work out how much to pay. We don’t add up character values, but we often
use a string of them to, say, send an email. We might also compare values, to see if they
are the same, or if one is bigger than the other. We might also test to see if a value is in
a particular range, or if it is a particular value. All these things, obviously, also go on
inside a computer program.

2.3 True and False

There is another type of value that is very important in Computing. It gets a separate
section here because maybe it is a little less obvious, even if we do deal with it in every-
day life. We deal with the ideas of truth, falsehood, and fakery. Take any statement,
and we might say that it is true or it is false.

Note: Arguably there is a third state, where we know that a statement is true or false

2.2. Values and Types 11

Yet Another Python Book, Release 0.5beta

but we do not know at present which.

Any statement can be tested, and from the test its “truth value” can be determined.
That said, some statements are always true, and this can never change:

Python is named after Monty Python's Flying Circus.
Some statements, on the other hand, are always false, and this will never change18:

Johnny Depp created the Python programming language.
Often, statements are either True or False, depending on something that can be tested.
So this statement is true as I type this:

It is Tuesday today.
It could be true as you read this, or it could be false. I have no way of knowing right
now. I have just read it on a Monday, so now it is false. In order to determine whether
it is currently true or false, you would need to test it, maybe by checking your phone.

Programming revolves around these two values, for reasons we will see in a moment.
When it comes to making sure that a program works correctly, they are probably the
most important values! A statement is true, or it is false. Perhaps it is true that a pro-
gram’s user has clicked a button in the interface, and so the program better respond
in some useful way. Maybe it is false that the user has permission to access that part
of the application. Maybe it is true that Mario just drove into a banana skin, and so the
program better make him skid.

True and False are called Boolean values, named after George Boole13, who in 1847 first
applied mathematical ideas to logic20. The word Boolean is usually written with a cap-
ital B for this reason.

Boole also showed how True and False can be combined using what are now known as
Boolean (or logic) operators. For example, if there are two statements, and both are
True, we can agree that a combined statement is True:

John Cleese wrote the Parrot Sketch.The Parrot Sketch was in Monty Python's Flying Circus.
John Cleese wrote a sketch that was in Monty Python's Flying Circus.
There are a whole bunch of logic operators, but most of them are only really useful when
working with electronics or hardware. For programming purposes, three are usually
enough. AND and OR combine two logic values (let’s call them A and B, like this:

18 He didn’t. See Guido van RossumPage 12, 19.
19 https://en.wikipedia.org/wiki/Guido_van_Rossum
13 https://en.wikipedia.org/wiki/George_Boole
20 This is a rare case in computing of an idea being named after a person (eponymy). Bonus credit if you

can find more.

12 Chapter 2. Before We Start

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Guido_van_Rossum

Yet Another Python Book, Release 0.5beta

A B A and B A or B
False False False False
True False False True
False True False True
True True True True

If you read it, the result is very much as you would expect if you just read it out loud:

A is True.B is True.
Therefore A and B is True.
A is True.But B is False.
Therefore A and B is False.
The third useful operator, NOT just flips the value. So a True becomes False, and vice
versa:

A not A
False True
True False

Why is this important? Let’s look at how computers (for the want of a better word)
“count”.

2.4 Binary

So, how does a computer store the data it needs? Computers do not have 10 fingers, but
they do have electrical switches22. A switch has two possible values; it can be “on”, or it
can be “off”, just like a light-switch at home.

So computers count in 2s, which is called binary.

Remember that humans count in 10s. We find 10s easy, probably because we are taught
to use 10s from an early age. The origins of this are probably that we have 10 fingers,
and we can use these to count. Children are still taught to count in 10s, and to use their
fingers to help them.

Powers are important here. This is when a number is multiplied by itself. To handle
larger numbers we give certain powers of 10 special names, so:

• 10 x 10 (or 102) is a hundred.

• 10 x 10 x 10 ((or 103) is a thousand.

22 In early computers, “on” and “off” would have corresponded to two positions of an actual switch or
button, of course.

2.4. Binary 13

Yet Another Python Book, Release 0.5beta

and so on.

Note: Counting in 10s like this is called base 10 or sometimes denary or (less accurately)
decimal. In Computing we also sometimes meet Octal (base 8) and Hexadecimal (base
16). See that those last two are powers of two. That’s important. It’s all to do with how
computers store data, with the memory arranged into chunks of 8 bits (a byte). More
on this later.

Computers do not have fingers! A computer is an electronic device, based around
switches, where a current is either flowing, or not. So a switch is something that is ei-
ther “on” or “off”. So if a sentient computer could count, it would count in 2s, in much
the same way as humans use 10s. This is called base 2, or binary.

This means that every data value stored inside a computer, either in memory or on a
disk, is encoded in binary. The details are not important here, but an overview is. Basi-
cally:

• An integer can just be stored as its binary equivalent.

• Various cunning ways exist to store floating-point numbers with fractional
parts21. Again, this usesd binary.

• Character data can be stored by using a table to convert between integer values
and the characters. The most common one is Unicode14. You may also see refer-
ences to Unicode’s predecessor, ASCII15, which offers a smaller set of characters.

So if a computer could somehow write out an integer it would have just two symbols to
work with, 1 and 0. It would also work in powers of 2: 22 is denary 4, 23 is denary 8, and
so on.

Hint: To avoid confusion it is usual to add a subscript to a number when different
number bases are involved. So 810 means the number 8, in denary (base 10). Likewise,
10002 is a binary value. (The two happen to represent the same number).

Important: Knowing and recognising the powers of 2 is a hugely important skill in
computer science:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
If you have ever bought a laptop, you will recognise those numbers from the system
specs! Currently, laptops tend to have either 8 or 16 GB of memory, and offer either
256 GB or 512 GB of storage. These are all powers of 2, and it all comes back to how
computers store data.

So how would a computer represent, say, 310?

21 This means that there are some decimal numbers that it is impossible to represent precisely inside a
computer. Different ways of representing numbers with decimal parts exist, and have different levels of
accuracy, but this is not something you need to worry about in normal programming.

14 https://en.wikipedia.org/wiki/Unicode
15 https://en.wikipedia.org/wiki/ASCII

14 Chapter 2. Before We Start

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/ASCII

Yet Another Python Book, Release 0.5beta

Easy. Look at the powers (it helps to see them in reverse order:

2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
3 is just 2 + 1. So, in binary 3 is 112.

How about a bigger number, like 42? Calculate it like this. First find the powers of 2 that
are needed (it’s just like giving change using the smallest number of coins possible):

42 = 32 + 8 + 2
Add in the missing ones:

42 = (1 x 32) + (0 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (0 x 1)
And read off the 1s and 0s. In this case 4210 is 1010102.

Most of this will be hidden as we write programs, but it helps to understand that this
is happening “behind the scenes”. Let’s now think about how a computer stores and
processes these values.

2.5 How Computers Work

This is not the time or place to go deeply into the inner workings of a modern computer,
but it really does help to understand programming if you have some idea of what’s go-
ing on inside the box. After all, that’s what a program is for; it’s to make the computer
do something useful.

Note: What follows is very imprecise, but is mostly accurate, at least from a program-
mer’s point of view. This is not a book about hardware!

If this was a hardware book, you would learn that the main components of a computer
are a CPU (Central Processing Unit), and some memory. The CPU is the part that carries
out the instructions, and the memory is where the data is stored. There also needs to be
some way to get data in, and get results out. Data being processed by the computer can
either be volatile, or non-volatile. Volatile data is lost when the computer is powered
off, and non-volatile data is not.

So, nside a computer is some memory. The memory stores all the programs that are
running, along with the data they are using. It’s usually called RAM. The memory is
volatile (everything in it is lost when the computer is powered off), so there is usually
also some less volatile storage, which these days still means a disk drive, or it could
be “Cloud” storage. There is usually a lot more non-volatile storage available, simply
because it’s a lot cheaper.

In either case, data is stored in binary, as 1s and 0s, and binary is used to represent
all the different kinds of data that a program might use. The computer spends a lot of
time shuffling data between the volatile and the non-volatile storage, which can have
a significant impact on the performance of a system.

The heart of a computer is the CPU. This is the chip that can carry out operations on
data. Usually it only has a very few operations it can do, like adding two numbers, or

2.5. How Computers Work 15

Yet Another Python Book, Release 0.5beta

comparing two numbers, but by combining them we can write complex programs. The
CPU can only work with programs and data that are in the volatile memory. To allow for
this the CPU has a small amount of memory internally, and any data needed is copied
into there so it can be processed. (That’s another performance bottleneck).

So, when a program runs, it is first loaded into the memory. If the program requires
some data (say a user has to type in a value, or some file is needed off a disk), that data
is also stored in memory. When the CPU needs it, it is copied into the CPU’s memory,
where it can be processed. Once done, the result is copied back into the main RAM, and
the program carries on. These days this all happens very quickly, but it’s still happen-
ing. It is still necessary to write programs that are efficient, and that don’t waste time
copying data around. That’s why we need to understand what’s going on

It is, obviously, much more complicated than that, with a modern CPU having multiple
cores to allow it to process many things at the same time. But hold on to this idea of
data being stored in memory, copied to the CPU, and written back. It’s important.

We finish with a look at how data is stored in that non-volatile memory (usually a hard-
drive of some sort).

2.6 Text Files

Important: This section is very important. Modern operating systems, especially Win-
dows, condition us to associate files with the applications that use them. We double-
click a file and the appropriate application opens, as if by magic. This is fine (and un-
doubtedly convenient) for the user who sees their laptop as an appliance, but it gets in
the way when we want to do serious work.

“Stuff” on a computer is organised into files (which are also stored in a binary format).
A file might represent a document, an image, or anything else that might be useful. Of-
ten a particular application is needed in order to use a file, so we sometimes talk about
“Word Files” or “Photoshop Files”. Files for applications like these are usually stored in
some format that makes them useful only with that application; you can’t open a Word
file with Photoshop, or vice versa. This is OK, but remember that the files are only useful
for as long as the appropriate application is available. If Word is suddenly unavailable
(or, more likely, is not installed on a particular computer) all those fine Word files are
useless.

The simplest file is just a plain text file. It contains characters, encoded in binary, prob-
ably in turn using Unicode. The characters could represent anything - a shopping list,
a Python program, a set of system specs. This format has been around for as long as
modern computers have been. Should we find a plain text file from the 1960s or 1970s
we would have a very good chance of accessing its contents in the 2020s.

The tight coupling of applications and files is becoming an issue in general Computing.
Files created with applications that have become obsolete are themselves obsolete, with
the owners unable to get at the data within. This is a big problem for businesses that
rely on this data, and often means that they have to spend a lot of money maintaining
obsolete software just so they can get at their historic data. The format in which we
store our data is important - we can access documents written on paper hundreds of

16 Chapter 2. Before We Start

Yet Another Python Book, Release 0.5beta

years ago, but getting at a document written in Wordwise of a home microcomputer in
1985 is basically impossible23.

One format that will always be used and will always be decipherable is that good old
plain text. In Windows, such files are often opened and modified with the Notepad edi-
tor, but they can be opened and modified with many, many tools. Programs are written
in plain text files. This means that programs written decades ago can still be read and
understood, even if the computers that could run them are long gone. It also means that
every computer has a tool that can be used to edit programs in plain text files (assuming
the computer has some sort of keyboard!).

A side effect of this is that there is a lot of choice when it comes to creating Python
programs (or programs in any other languages). Some tools are sophisticated, and offer
features specific to Python. Others are more general purpose. Some are very basic, but
at least allow you to get the job done. More on these later.

Hint: If you have some valuable data, consider keeping it in a plain text file. So if you
lose that beautiful Word CV, at least you have the data so you can rebuild it. And if you
really want to store some data so it will be around for 50 years, print it out and put the
paper somewhere safe.

Tip: This book applies this principle! The files that make up this book are plain text. A
simple mark-up language called reStructuredText16 is used to mark sections, fonts and
so on. Even if that language was no longer supported anyone could take the text files,
and reasonably quickly extract all the content. The HTML or PDF that you are looking
at is created from the plain text files by a bunch of Python programs (which are them-
selves plain text files, of course).

A side issue is that the files that make up this book can be edited on basically any com-
puter.

The practical upshot of all this is:

Important: There is no such thing as a “Python File”. A Python program is a plain text
file that happens to contain the instructions that make up a Python program. It can be
created or changed with any tool that can work with plain text files. As we will see, that
tool could just be good old Notepad, or it could be something more sophisticated.

A second upshot is that this book can be neutral as regards the operating system, and
overall toolset you choose to use for your programming. Any OS can handle plain text
files, and there are many, many, great tools out there. This book will not be tied to any
particular toolset, and will not assume that you have any particular tools, apart from
Python, installed.

23 We’re talking about the format of the data on the disk here, but the same applies to the physical for-
mat. Not so long ago, for example, every PC had a CD drive. Now, very few do. So what shall we do with all
that data we archived to CD in the 1990s and 2000s? Let’s hope none of it was important, eh?

16 https://docutils.sourceforge.io/rst.html

2.6. Text Files 17

https://docutils.sourceforge.io/rst.html

Yet Another Python Book, Release 0.5beta

2.7 Takeaways

The takeaways from this chapter are very simple. You need an understanding of each
topic above. For example:

1. You need to understand (in everyday terms) instructions, sequence, choice, and
repetition.

2. You should know that values have different types, and have some idea of how
these are stored in a computer.

3. You should have a basic idea of how a computer stores and processes data.

4. You should understand that files have different formats, and why plain text is the
one format to rule them all.

18 Chapter 2. Before We Start

CHAPTER

THREE

GETTING STUFF TOGETHER

Promised we would go slowly. But it’s very important that we get everything in place
before starting to program. That way we will be able to concentrate on the actual pro-
gramming, rather than getting distracted tweaking the environment.

So, now to get everything together so that we can start programming. You may already
have access to the required software provided by someone else, but there really is no
substitute for setting it all up yourself. For one thing, you learn how to do it. For an-
other, you can set things up just as you find you like them. And you can change them as
the way you like to work changes. No two programmers work in the same way. If you
want to get good at this you are going to have to think about how you work best.

Important: Bearing in mind that every programmer works best in a different way, this
book will not assume that you are using any particular tool. It’s up to you. By all means
ask for recommendations, but don’t feel you have to follow them!

First, we need a reasonably powerful PC or laptop37; anything from the last five years
or so will be fine. The programs we will be working on here are not going to need huge
amounts of system resources, so that old laptop on the shelf will do fine if you blow the
dust off. There are no important requirements for disk space or memory for Python
itself, but when we come on to think about development environments you might want
to check out their requirements.

So, having dusted off some kit, and that it has a web browser and Internet connection,
there are two main things to get installed.

1. The Python language.

2. An IDE or editor that will allow us to edit (and ideally run) programs.

Important: Any section like this is very difficult to keep up to date, as versions are
always changing, and web resources are moving. Be prepared to seek out information
if things don’t look exactly as described here!

But first let’s consider the operating system itself. The choices start there.

37 A laptop is best, because it can come with you. The ideal setup for most programmers is a laptop along
with an external monitor on any desk where they are likely to roost.

19

Yet Another Python Book, Release 0.5beta

3.1 A Note on Operating Systems

The operating system is the software that makes the computer “go”. It controls access
to files, takes care of video and audio, and does all the things that makes the computer
useful. Strictly speaking, on top of the operating system there is a more software, such
as a window manager, which deals with all the tricky bits of the interface, but in some
modern operating systems the distinction is rather blurry.

It is likely that the operating system you have used most up to now is some flavour of
Microsoft Windows. Before we start programming round here, this is a good point to
pause and to realise that there are alternatives to Windows. Remember that Windows is
just the operating system that happens to be running on your computer. In most cases
it is possible to replace it with something different.

Of course, Apple Mac macOS systems provide one such alternative, all in a very attrac-
tive Apple package with curvy corners, and closely tied to their very neat hardware.
This is a very popular setup among programmers who prefer an interface with a rich
attractive look-and-feel, and (if we’re honest) also think that the hardware itself looks
cool. This system becomes even more attractive for those who favour an iPhone, have
an Apple Watch, and so on. The Apple ecosystem is very well integrated, and it is a very
good choice for those who like to have everything “just work”.

The Open Source operating system Linux is also popular with programmers, who value
its free-ness, power, and customisability. Linux systems come packaged as Distribu-
tions (usually “distros”), and generally “just work” when installed on standard hard-
ware. The only problems are usually with “bleeding edge” hardware, or where various
big corporations have done deals to lock users in to using their products.

Popular Linux distros at the moment are Ubuntu24 and Linux Mint25. Both these allow
for a wide choice of window managers, which in turn allow users to customise their
systems to their precise liking. Since Linux is really aimed at users who are going to be
writing programs, and using the associated tools, it is often the case that such things
in Linux “just work” rather more than they do in Windows.

So there is a choice. The most recent StackOverflow Developer Survey26 showed that
macOS and Linux are only a little behind Windows in the current popularity stakes.

Windows obviously has a huge advantage in terms of number of users as it comes ready
installed on most laptops, even if the user has no intention of using it. (And, as we will
see, if you decide to use a modern IDE, it will work just the same on any of the three, so
the operating system itself becomes less relevant.)

Using macOS obviously requires buying a Mac, so this is a choice not to be made lightly!

Linux, however, is free, and is easy to install. It even lurks within recent releases of
Windows in the form of the Windows Subsystem for Linux27. Most Linux systems will
boot from a USB drive, allowing you to try them out without installing anything. A
flavour of Ubuntu28 or Mint29 are good places to start. And if you know a Linux user
they are very likely to be very keen to show you how it works.

24 https://ubuntu.com
25 https://linuxmint.com
26 https://survey.stackoverflow.co/2022#section-most-popular-technologies-operating-system
27 https://learn.microsoft.com/en-us/windows/wsl/install
28 https://ubuntu.com/#download
29 https://linuxmint.com/download.php

20 Chapter 3. Getting Stuff Together

https://ubuntu.com
https://linuxmint.com
https://survey.stackoverflow.co/2022#section-most-popular-technologies-operating-system
https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/#download
https://ubuntu.com/#download
https://linuxmint.com/download.php

Yet Another Python Book, Release 0.5beta

Linux is also a lot less resource-hungry than Windows, so it can be a fine choice for older
hardware that struggles to run current versions of Windows.

This book is not going to preach (any more) about which operating system is best to use,
although it was created on Linux, specifically Linux Mint with the Cinnamon window
manager. The message is that you should be using the operating system that makes
you the most productive. You should know that there is a choice, and you shouldn’t be
using something just because you always have done! And whatever system you choose,
make sure you really understand how to use it.

Ok. Sermon over. Let’s get Python flying.

3.2 Getting Python

Python is free, and can be downloaded from The Python Home Page30. At the time of
writing the current version is 3.12.2. The Downloads section lists the currently available
versions, and shows for how long each is supported (releases are usually supported for
five years). If you have a choice, just pick the most recent.

Note: The Python Home Page is a good place to start for all things Python. There are
tutorials, documentation, and links to other resources. It is worth spending some time
looking around.

There are Download links for Windows and Mac. Windows users will also find it in the
Windows Marketplace, but it is usually easier to install from the main Python down-
loads page, and this also means that the version will be the latest one.

Linux users most likely already have Python installed38, so have nothing to do. Opening
up a terminal and typing:

$ python3 --version
will reveal whether Python is installed, and will show tghe version number. If it is not
installed, Linux will probably show the commands to install it.

New versions of Python are released regularly (the schedule is on the Downloads page).
It is unlikely that you will need to update while you are learning the basics but if you
do, head back to the Downloads page. Linux users will find that Python will just update
automatically, Windows and Mac require fresh downloads.

It is usually only important to update if the second part of the version number
changes; so updating from 3.11 to 3.12 is important, but from 3.12.1 to 3.12.2 is not.

Important: Whatever version you install, be very sure that it is some flavour of Python
3. Downloads for the old Python 2 are still available for various good historical reasons,

30 https://www.python.org
38 The way that Linux distros are updated means that this might not be the latest version. That’s fine.

The version will update from time to time.

3.2. Getting Python 21

https://www.python.org

Yet Another Python Book, Release 0.5beta

but Python 2 cannot run most programs written in Python 3.

3.2.1 The Python Interpreter

As mentioned before, a useful feature of Python is the Python Interpreter, a handy tool
that has many uses, but which comes in useful most often for testing out fragments of
code. It will serve here to check that we have Python installed.

Hint: The default prompt in the Python Interpreter is three > characters, viz >>>. And
by convention whenever you see something like this:

>>> print('Spam and Eggs')
this shows code being typed at the interpreter prompt. Be sure not to copy the prompt
if you copy this code. If you are reading this online, the magic copy button that appears
when you hover the pointer over the code will not copy the prompt. Good, eh?

Firing up the interpreter will show the current version of Python running. It can be
found by hunting through menus on Windows (so consider making a shortcut on the
Desktop or in the Taskbar), or on Linux by opening up a command-line and typing:

$ python3
The response will be something along the lines of:

Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] on linuxType "help", "copyright", "credits" or "license" for more information.>>>
So here we have Python version 3.10.6, which happens to be running on Linux. Things
will obviously look slightly different on Windows, but all the information will be there.

To exit the interpreter, simply issue the exit() command:

>>> exit()
Assuming you see the interpreter, you do have Python, and can carry on to install an
IDE.

3.3 Choosing and Getting an IDE

An IDE (that’s Interactive Development Environment) is a tool that allows a programmer
to create, edit, and run programs, all in one handy interface. They are not strictly re-
quired for programming, and using one does introduce something else to learn, but in
the long run a good IDE makes the whole programming task easier and more enjoyable.

There are many choices here, and as with operating system, this is a personal choice.
The important thing again is not just to use a tool because you have been told to. There
are many, many choices. And the choice you make now may well stick with you through

22 Chapter 3. Getting Stuff Together

Yet Another Python Book, Release 0.5beta

your whole career. Evaluate some of the options, and pick the one that fits best with
your needs.

Tip: Most of the modern IDEs look basically the same, and many share similar menu
structures. Keyboard commands are similar, too. It is usually the case that <CTRL>-Z
will undo the previous edit, for example. So, if you pick one IDE for now, it wouldn’t be
too much effort to change to another later.

This section will outline some of the main choices, but there are more. Remember that
most of the popular IDEs will run on any operating system, so the choice of one does
not impact on the choice of the other.

A second glance at the same StackOverflow Developer Survey31 shows the current state
of play. Visual Studio Code is the top choice. This is Microsoft’s free code editor offering,
which started out life as part of Visual Studio. If you look into these, be sure to realise
they are different things!

This score is a little artificial because VS Code has an ecosystem of plugins that means it
can be used to work with any language, making it a very general-purpose tool, popular
with developers using different languages. The third choice, JetBrains IntelliJ is for Java
only. Its Python cousin, PyCharm, is also high on the list, as are their close relatives
WebStorm (for JavaScript), PhpStorm (PHP), and others from the same stable. So VS
Code is top, but not by as much as it might seem.

An obvious reason for its popularity is also that VS Code is free. JetBrains IDEs are com-
mercial software, and require a paid-for licence. to any business employing a signif-
icant number of developers, this is important! But JetBrains do offer free versions of
their most popular IDEs - IntelliJ and PyCharm - so that does keep the competition go-
ing.

Let’s look at the two obvious contenders. The screenshots here are taken on Linux, but
the IDEs look the same on other operating systems.

3.3.1 Visual Studio Code

VS Code is a relatively new tool, but one that has gained a lot of traction very quickly. It
is available for Windows, Mac, and Linux, and is extremely configurable and tweakable.
Certainly it’s a tool that is not going to go away any time soon. Pedantically, VS Code
is a text editor rather than an IDE, because out of the box it has limited support for
specific languages. That said, its power increases greatly with the addition of plug-ins,
and there are many available for Python.

The image above shows VS Code being used to create a short Python program. The plug-
ins for Python have been installed, and a rather cool dark blue colour scheme (Winter
is Coming) is in use. The small arrow to the top right would run the program, with the
output appearing just below the program code. All very neat.

VS Code also scores in the popularity stakes because it is free. It can be grabbed for
free32. The download page detects your operating system, and offers helpful instruc-

31 https://survey.stackoverflow.co/2022#section-most-popular-technologies-integrated-development-environment
32 https://code.visualstudio.com

3.3. Choosing and Getting an IDE 23

https://survey.stackoverflow.co/2022#section-most-popular-technologies-integrated-development-environment
https://code.visualstudio.com
https://code.visualstudio.com

Yet Another Python Book, Release 0.5beta

Fig. 1: VS Code with Python Program

tions. It is then a case of installing plug-ins (called extensions) for the required lan-
guages. This is just a case of opening the settings, and searching for “Python”.

Hint: Rather than searching for Python plug-ins, you can just enter a short Python
program. VS Code will detect that it is a Python program, and offer to install the plug-
ins for you. The same trick applies to other languages.

VS Code is being actively developed, and new features are added regularly. It is a fine
choice of IDE, especially if you plan to use different languages for other projects.

3.3.2 PyCharm

PyCharm is a commercial product39, developed and marketed by JetBrains33. Happily
there is a free “Community” version; this lacks many of the features of the “Profes-
sional” product, but those are not likely to be of much, if any, interest to us here. The
Community Edition will be fine. It is a straightforward download40, and as usual the
download page will detect your operating system and offer the correct version.

The image above is actually the “Professional” version of PyCharm; the “Community”
version would have fewer menu options across the top. It is using a third-party plugin
for a theme, again a dark one. Clicking the small green arrow to the left of the program
would run it, and the output would appear below.

39 JetBrains offer educational discounts for students and staff. At present this consists of free access to
the full versions of all their tools. All that is usually required is to create an account with a University or
College email address.

33 https://www.jetbrains.com
40 JetBrains also offer a tool called the JetBrains Toolbox, which is a one-stop shop for all their tools. This

is a good way to keep all the tools up to date, and to install new ones. It is also free. It may be that this will
become the official way to install and manage JetBrains tools in the future.

24 Chapter 3. Getting Stuff Together

https://www.jetbrains.com

Yet Another Python Book, Release 0.5beta

Fig. 2: PyCharm’s Previous UI with Python Program

As a full-featured IDE, PyCharm will do a lot more out of the box than VS Code. This
is a good thing in that there is less to install and PyCharm is the more powerful of the
two. But it can be a bad thing in that many of the options available are irrelevant to the
current project, and can get in the way. This is probably why in early 2023, JetBrains
started development of a new interface for PyCharm.

This new interface is less cluttered (all the menus are actually still there, hidden under
the “burger” top left), allowing the programmer to concentrate on the task at hand. At
the time of writing this, the new UI has become the default, but the older version is still
available under the Settings panel.

The new UI reduces the number of options that are available by default, with the result
that it makes PyCharm look rather like VS Code, which may not be entirely a coinci-
dence. This new interface is highly recommended.

3.3.3 Picking and Choosing

The choice of IDE is a personal one, but also one that can stay with you for a long time.
Neither PyCharm or VS Code is going to go away any time soon, so time invested in
learning how to use them is time well spent. Both are highly customisable - colour
schemes and themes are just where it starts. It is worth spending time seeking out tu-
torials and other hints and tips.

Think of this process as being similar to buying a new car. It is usual to test drive a few
new cars so as to get a feel for them. And also to investigate what options are available,
and how they can be customised. There is no one car that is universally acceptable, and
likewise there is no one IDE. Everyone has preferences, and favourites. And these can
change over time.

It is also worth looking beyond the features that the IDE provides. For example, VS Code

3.3. Choosing and Getting an IDE 25

Yet Another Python Book, Release 0.5beta

Fig. 3: PyCharm’s New UI with Python Program

is rather more lightweight than PyCharm, so tends to start faster. This would make it a
better choice on older hardware. And, of course, PyCharm is a commercial product that
usually requires a paid-for licence; this is not a consideration as long as the Community
Edition meets your needs, but could become an issue in the future.

Your IDE is going to be the main tool you use when programming. Tools are very per-
sonal things. It is worth getting them right. You are going to be spending a lot of time
with your tools, so make sure they are the right ones for you.

Note: When using an IDE, much of the operating system underneath is hidden. Py-
Charm and VS Code work much the same on Windows, Linux, or Mac. This means that
while the operating system choice might seem to be the most important, it really isn’t.
This book was mostly written with PyCharm, usually running on Linux, but occasion-
ally on Windows. Needs must.

There are obviously other options for creating programs. After all, programs are just
good old text files, so good old Notepad would do the job. Use whatever tools make you
most productive. But make them yours.

26 Chapter 3. Getting Stuff Together

Yet Another Python Book, Release 0.5beta

3.4 Other Tools

It’s also worth considering spending some time looking at other tools that will be of
use when programming. Obviously some sort of backup solution will be needed, for
example. This could be some simple Cloud-based storage, such as OneDrive that comes
bundled with Windows.

Important: A USB stick is not a backup solution.

It is also worth looking at version control tools. These are tools that keep track of pro-
grams as they are developed, changed, and otherwise maintained. These will become
essential later on, but there is no good reason not to get started with them now. The
standard is Git34 which is free and available for all operating systems. There are plenty
of tutorials to give you the basic idea, and Git is actually built in to both VS Code and
PyCharm.

A site like GitHub35 combines version control and cloud storage41. As well as keeping
work safe it is also a fine place to build a portfolio of work, such as a Book36. As we work
in more mobile ways, it is very useful to keep program code in the Cloud, so that it can
be downloaded and work on using whatever PC or laptop happens to be available at the
time.

3.5 Takeaways

The most important messages here are:

1. Choose your toolset for programming wisely. Listen to others, but make the choice
yourself.

2. Once chosen, customise it. Devote time to this. Get it just right.

3. Time invested in learning and customising a tool might not produce any pro-
grams, but it is not wasted time. Quite the opposite, it is time that will pay you
back over and over again in the future.

This book includes Python programs, so the whole thing was developed using PyCharm
(new interface, tweaked colour scheme). The files themselves are on GitHub. The reason
for all this is that is what the author prefers to use. You are encouraged to be different!

Now, let’s make some code.

34 https://git-scm.com
35 https://github.com
41 See also GitLabPage 27, 42, BitBucket43.
42 https://about.gitlab.com
43 https://bitbucket.org/product
36 https://github.com/TonyJenkins/hungarian_phrasebook

3.4. Other Tools 27

https://git-scm.com
https://github.com
https://github.com/TonyJenkins/hungarian_phrasebook
https://about.gitlab.com
https://bitbucket.org/product

Yet Another Python Book, Release 0.5beta

28 Chapter 3. Getting Stuff Together

CHAPTER

FOUR

GETTING STARTED

Now to get serious and get programming.

There are three things to master here:

1. How to enter a program.

2. How to get it to run.

3. How to find the results.

It has been said44 that once a new programmer can do these three things, the rest is
comparatively easy!

It is important not to skip over this part so as to get to the more useful and interest-
ing programs. We are going slowly for a reason! It is vitally important to be able to
work effectively with your IDE. You need to be able to efficiently enter programs, run
them, and check the output. Most likely you will make mistakes entering the programs
(everyone does), so you will also need to be able to find and fix these errors.

We will think more about errors later on, but for the moment let’s agree that there are
two types of error:

Syntax Errors.
The program written does not conform to the rules of Python, so the Interpreter
does not understand what it needs to do, and so the program fails. Usually, the IDE
will spot most of these and highlight them in some way. This means that syntax
errors are usually easy to spot and correct.

Semantic Errors.
The program is correct Python, and so can be run, but does the wrong thing. This
is discovered by comparing the results of running the program to the desired re-
sults should the program be running correctly. Since this can be a lengthy and
somewhat tedious process, these errors are harder to spot and correct.

Do not panic if you get errors. Everyone does. What you need is experience in spotting
them, and then fixing them. Once you’ve seen an error the first time you’ll be able to
fix it next.

Tip: As you enter programs you may start looking around for a “Save” button to write
the current file to the disk. There is probably no need for this, as IDEs tend to be setup

44 It is said in The C Programming Language by Brian Kernighan and Dennis Richie, a book affectionately
known as “K&R”.

29

Yet Another Python Book, Release 0.5beta

to save as you type. This is the default for PyCharm, and can be turned on for VS Code.
Obviously it can be set to your preference.

One way to learn some programming is simply to enter some programs, and run
them45. Gradually you come to understand what all the commands do. So let’s start
with three short programs, and try that. Remember that a program is just a text file.
So you need to be able to create that file using your IDE. And you need to store the file
somewhere where you will be able to find it again. That might seem obvious, but it often
gets forgotten. Pay attention to where your IDE stores the file!

Tip: You might find it easier at first to create the folder for your programming project,
and even a file, using the usual operating system tools. The file can be created with a
simple text editor, like Notepad. The folder can then be opened with the IDE.

First, let’s meet some programs.

4.1 Three Programs

Here are three programs. You should be able to see what they do just by reading them.
If some detail isn’t obvious at the moment, no need to worry. For the moment we are
just interested in getting them to run.

Enter them, one at a time, in separate files, into your IDE46. If you have syntax errors the
IDE will probably spot them and highlight them in some way. How this looks depends on
settings and colour schemes, but expect some sort of underlining as the IDE expresses
its unhappiness. If they all look correct, you can then run them in whatever’s the most
convenient way. Remember the little green arrows in the two IDEs introduced before.

Caution: Take care when copying programs from a book. Long lines can get split
in awkward places. You should see a symbol at the start of any line where this has
happened.

Listing 1: hello.py
#!/usr/bin/env python3
if __name__ == '__main__':print('Hello, World')

45 Most programmers between the ages of, say, 50 and 60 learned programming this way, hacking away
at programs on the home microcomputers of the 1980s. ZX Spectrum all the way.

46 If you are looking at this as a web page, you will see that a handy button will appear when you hover
the mouse over the program code. This allows you to copy the code, but you will learn more if you type it
yourself.

30 Chapter 4. Getting Started

Yet Another Python Book, Release 0.5beta

Listing 2: hello_name.py
#!/usr/bin/env python3
if __name__ == '__main__':name = input('Hello, what is your name? ')print(f'Hello, {name}. It is good to meet you.')

Listing 3: hello_age.py
#!/usr/bin/env python3
if __name__ == '__main__':name = input('Hello, what is your name? ')

year_now = int(input('What year is it today? '))year_born = int(input('And what year were you born? '))
age = year_now - year_born
print(f'Hello, {name}. It is good to meet you. This year you will

→˓be {age} years old.')
Important: Indentation is important in Python. This refers to the amount of space at
the start of each line. In these simple programs, there is only a little indentation, but it
must be correct. So gthe first two lines must start in the left-most column, and all the
following lines must be indented. If you don’t copy this, it will be a syntax error.

If the programs fail to run and produce some useful output, take a close look to see that
you have them exactly right. Notice how your IDE will add colours to the code; as you
get used to this it will help you spot mistakes as you type. Some IDEs will also highlight
errors in the code as you type, or make possibly helpful suggestions.

Remember that a syntax error is where there is a problem with the way the program is
expressed, meaning that it cannot run. A semantic error, on the other hand, is where
the program runs, but does not do what you want. The first is usually easy to spot, the
second is not.

Tip: You will see that some of the programs contain quotation marks, pairs of which
have to match up. Some IDEs will insert a closing quote as soon as you enter an opening
quote. This does save typing, but can be confusing at first. Of course, you can root
around in the settings to turn the behaviour off.

Make sure you save the code somewhere, and that you know where this is! Ideally store
your programs somewhere where you will always be able to find them.

These three programs are probably the first three that any new programmer creates.
So what do these programs do?

4.1. Three Programs 31

Yet Another Python Book, Release 0.5beta

hello.py
. . . is the traditional first program that anyone writes. It just prints a cheery greet-
ing on the screen.

hello_name.py
. . . is the traditional second program. This time the program displays a prompt,
the user enters their name, and a personalised cheery greeting is displayed. Be-
hind the scenes, the user’s name is encoded as binary, stored in the computer’s
memory, and then retrieved, but all this is invisible to the programmer.

hello_age.py
. . . displays a cheery greeting that includes the user’s age, which is calculated.
Again, values are entered, and will be encoded as binary. Python always takes in-put as a string of letters, so there is a small fix to show that the values entered
are going to be integers, and will be used for a calculation. Again, a lot happens
behind the scenes even in this small programmer, but Python is a high-level lan-
guage, and the programmer doesn’t need to worry about all this.

Before leaving these programs, make copies, and change a few things. The worst that
can happen is that you change something and the program stops working. Spend time
getting used to your development tools; this will save a lot of pain later on.

4.2 Programming in a Good Place

Before carrying on to learn more, it really is worth taking some time to think about how
you work best, and about which tools suit you best. You have started to work with an
IDE. Maybe there were some things that were a bit annoying, or maybe you really don’t
like the colours it used for the programs. Or did you keep getting distracted? Or did
your arms get tired with the typing?

There are two aspects to making sure you are programming in a good place. First, there
are the software tools you use to create your programs, and second there is the question
of the physical environment.

4.2.1 Tools of the Trade

You shouldn’t be using tools just because you’ve been told to, or your friends do, or
because you always have. You need to have the best tools for the job, and that’s different
for different people. If you have a choice of tools to use, get them all installed, and try
each one. Maybe use the programs above. Enter and run those programs in different
IDEs. See which IDE you prefer. There is no single choice that works for everyone.

A modern IDE is immensely powerful. And as a programmer you will spend most of
your day looking at your IDE and working with it. So you should take time to learn how
it works, and how to make it work for you. You probably only need a small fraction of
what your IDE can do, but make sure you know what this small fraction is, and how to
use it efficiently.

Modern IDEs are also extremely customisable. No-one uses an IDE with all its default
settings. Take a look at the various colour schemes available, and pick one you like47.
Make the font bigger if you need to. Hide menus and tools you are not going to need,

47 As long as it’s a dark colour scheme. No-one uses light schemes. Seriously.

32 Chapter 4. Getting Started

Yet Another Python Book, Release 0.5beta

make those you always need available all the time. You will probably find that the IDE
will allow you to create an online account to store settings so that you can sync them
between your different computers. Seriously, take time to use the IDE, make it yours.
You are going to be using it a lot over the next several years!

..index::
single: Programming; craft

Programming is a craft. Craftspeople use tools, and they get the tools right.

4.2.2 The Physical Side

And look around.

Over time, a programmer will learn about what makes the best environment for them
when they work. They will change things so that they are working in the best place.
Good employers will recognise this, and should encourage it.

There are probably two aspects to this, but they are connected. First there is the hard-
ware - the PC, laptop, screen, and so on - and second there is the overall environment
- heat, light, desks, ambience. Hardware even includes the keyboard and mouse. Envi-
ronment covers furniture, noise, and more.

There is again no “one size fits all” here, but most programmers probably prefer to work
from a laptop, which they carry with them everywhere. (This is even more common in
these days of hybrid working). The laptop can be used wherever it is needed “on the
road”, or can be used in the office at a conventional desk. Usually, on a desk it will be
hooked up to a second display for comfort and productivity. Docking stations can add
ports and other connectivity.

Having multiple displays is very important. If you have never tried this, you should!
This small change may not immediately occur to people, but having two (or even three)
screens available can seriously improve productivity, and is healthier too as it keeps
your eyes busy. And why are monitors always landscape, with the longer edges top and
bottom? Have you tried a portrait monitor? It’s a game-changer, especially for reaing
long programs or documents.

Hint: Getting the right setup is important. Think out of the box too. If you’re going to
work with long programs, how about having a second monitor in portrait orientation?
That’s another potential game-changer. Or if you’re often on the road, how about a
portable second monitor for the laptop? They can be no bigger than a tablet, and can
usually be powered by the laptop.

Desktop PCs still have their place but, again, consider having more than one display.
And that keyboard? Is it one you can happily type on all day? Are you good with where
all the keys are? Is the mouse comfortable to use? Do you keep randomly hitting some
key that has some annoying effect? If so, you can probably remap it.

And finally, think about the overall environment. A tidy desk is best. And a chair you
can sit on for a while. Do you want somewhere to open books, or are you happy to prop
up a Kindle, or read on one of your monitors? Natural light is ideal but, if not available,

4.2. Programming in a Good Place 33

Yet Another Python Book, Release 0.5beta

there should be plenty of light sources. Think about whether you work best with music
playing, or without? Above all, make sure there is a ready supply of coffee to hand48!

Important: Having said all that, it is also important to appreciate the need to take
breaks away from a screen. This can sound a bit “Health and Safety Gone Mad”, but
there is a serious point to it.

4.3 Takeaways

After this chapter you should:

• Be able to enter programs, run them, and see the output.

• Have familiarised yourself with your programming tools, and at least started to
customise them to suit your own preferences.

• Have thought about the best physical environment for your programming work,
and ideally arranged this.

Now we can move on to see how a program processes and stores values. After all, that’s
what computers are good at, and also if you think about it, what every program does!

48 Other beverage choices are possible, but most programmers go with coffee. And not decaff.

34 Chapter 4. Getting Started

CHAPTER

FIVE

SOMEWHERE TO START

The time has come to create a program, and also to understand how it works. So in this
chapter we will look at the three building blocks we need:

1. Data.

2. Input.

3. Output.

We have actually seen all these in the programs in the previous chapter. so shopefully
you have some idea of what is to come.

Tip: Remember that a good way to learn to program is just to read programs, and un-
derstand them. This is easier than writing new programs, but an excellent place to start.
It’s the same with any language; people who learn a foreign language can usually read
and understand it well before they are able to write an essay in it.

Right. At the most basic level every program does the same thing.

1. It takes some data.

2. It transforms that data in some way.

3. It does something with the new data.

There are obviously many variations here. The data could be read from a file, or from
a keyboard. It could be processed in many different ways. It could be written back to
the same place, a different place, or just displayed on a screen or printed out. But all
programs do basically the same thing.

• A word processor reads a file containing a document, allows the user to edit it, and
then saves the new version.

• A game reads a file containing the user’s profile and a level description, allows the
user to play the game, and then stores the new saved state.

• A utility to store WiFi settings on a smartphone reads the connection information
as the user types, uses it to test and make a connection, and then saves it to a file
so that the phone can connect automatically next time.

It really is that simple. If you edit a document using Word, you are just using a program
to change the file that represents the document. If you play a race in Mario Kart you
are really just using a program to change the file that represents your saved state in
the game.

35

Yet Another Python Book, Release 0.5beta

Any program needs to store data, so this seems a good place to start. We already know
that data is stored in a binary format, and that it can be on disk or in memory. It’s
time to see how Python does this. Happily, as we will see, Python’s high-level approach
means that a lot of the details are hidden from us.

5.1 Creating Values

If a program is going to store data, a programmer needs to be able to refer to that data.
Every data item processed in a program is going to need a unique name, and the com-
puter will then keep track of what value is currently associated with what name. So our
simple model for how a program works becomes:

1. Read the data, giving each item a unique name.

2. Process or transform the data.

3. Output the data, using the names to make sure that everything ends up in the
right place.

So, every data item needs a unique name so that it can be referenced. In Python, the
simplesy way new data item is created is simply by giving a value to a name. So, let’s
create a data item called eggs and give it the value 3.

Try It!

You can copy the commands in this section and run them at your own Python inter-
preter. On the web, hover the pointer over the code, and a little button will appear to
allow you to copy the code.

Remember that >>> represents the prompt of the interpreter, and should not be
copied. In fact, on the web you shouldn’t be abe to!

>>> eggs = 3
This looks like a very simple line of code, which indeed it is. But, behind the scenes,
several things have happened:

• Python is aware that there is a “thing” called eggs, and has added this to its list of
known names (its “namespace”).

• By looking at the value assigned to it, Python has determined that eggs is an inte-
ger.

• The value 3 has been stored at a particular location in memory, using the correct
amount of memory for an integer.

• An entry has been made in a lookup table to allow Python to find the current value
of eggs. The table stores the name, and the memory location where the value can
be found.

To give things their proper names, we have now created a variable with the identifiereggs that has been assigned the value 3. From now on we’ll try to use the proper terms.

36 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

So, what happens the next time we access the value stored in the variable with identifiereggs? Maybe we just want to print it:

>>> print(eggs)
Python checks the namespace. It sees something calledeggs there, so goes to the lookup
table to see where this is stored in memory. It then accesses the memory location to (in
this case) print the value out.

So, every time a new value is created, an entry is made in the lookup table. And every
time that value is needed, the process above is used to extract it from memory. Ob-
viously all this happens “behind the scenes”. In the olden days programmers had to
do much of this work themselves, but high-level languages like Python remove all that
pain. But it still pays to understand that this is happening.

Note: This description is another that is deliberately not precise, but will hopefully
give you an idea of what is going on.

You need the ideas of creating a variable (value), and Python then maintaining a table
of where each variable is currently held in memory.

5.2 Values and Types

The value stored in eggs above is an integer, a whole number. The type of a variable
is important, as it determines what operations can be carried out on. We can use an
integer in artihmetic, for example. It might not make sense to do arithmetic on other
data types. Let’s see.

Python determines the type of the variable by examining the value assigned to it. As
well as the operations that are valid on it, the type of the value determines a number
of things, not least how much memory is needed to store it. A floating-point value (a
number where the decimal part is important) is created like so:

>>> swallow_speed = 12.5
This value requires more memory to store the decimal part, but the rest works the same
as before. And all the details of how a floating-point number is stored inside the com-
puter memory are, thankfully, hidden.

Boolean values work like this:

>>> brave = False
>>> run_away = True

Warning: Boolean values are basically integers in disguise. Be careful using them,
and never ask a user to enter one.

Finally, strings are sequences of characters. Usually they have some meaning, like a
name, but they could contain anything, including encrypted text:

5.2. Values and Types 37

Yet Another Python Book, Release 0.5beta

>>> name = 'Sir Robin'
Hint: Strings have quotation marks around them. You can use single or double quotes,
but it is best to stay consistent49. Boolean values do not have quotes.

Python is a dynamically typed language, which means that the types of variables are
determined when they are first used, inferred from the value given. It also means that
the type associated with a name can change, but this is usually very confusing, and is
best avoided!

In summary, Python provides these four built in types50. They are called the primitive
types.

int
An integer, a whole number. Positive or negative with, effectively, no upper limit.

float
A number with a decimal part.

str
A string of characters. Effectively any length.

bool
A True or False value.

A built-in command called type can be used to find out what type is currently stored
in a value. It will get some use in the next sections as we work at the interpreter, but it
is rarely used in programs. As we will see in the next chapter, Python’s philosophy is to
run a program, and deal with any errors caused by types as they arise. So very rarely
does a program need to check a variable’s type.

5.2.1 Investigating Integers

Integers are probably the most common data type, so we’ll start with those. Some pro-
gramming languages offer many different types for whole number values, the choice
depending on the range needed, whether they can be negative, and the like. Python
keeps things simple and offers just the one51:

>>> eggs = 3
>>> type(eggs)<class 'int'>
Let’s see what we can do with some int s.

49 The style in this book is to use single quotes unless double-quotes are essential, for example if the
string itself contains single quotes. You could copy that, or go your own way. Just be consistent.

50 This is not true. Sorry. There is another type, NoneType. This means that a variable exists, but has no
value, and therefore no type. We’ll need it later, so just hold the thought for now.

51 As we know, Python is intended to have one, and just one, way to do anything. So why have a whole
bunch of different types for whole numbers, when one will do? Looking at you, Java.

38 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

Doing the Maths

Integers are numbers, and the most common uses fo them obviously involve all the
things we do with numbers. All the usual arithmetic operators are available. It is quite
possible to use the Python interpreter as a handy calculator, which will also show the
four mathematical operations. Here we have addition, subtraction, multiplication (the
symbol is *) and divison (/).

>>> 2 + 24
>>> 8 - 62
>>> 3 * 412
>>> 8 / 24.0
Important: Take a close look at the last operation above. 4.0 is a floating-point value.
So if we divide an integer by another integer, the result is a floating-point number,
even if the decimal part is zero. Why so? Because in general the result of dividing two
integers will have a floating-point part, so it makes sense to always return a float as
the result.

This all looks straightforwarde, but there is one detail to cover. There are three different
kinds of division. Above is what we might call “normal” division, where the result is a
floating-point number. This is usually what is needed, so it is what happens by default.
However, sometimes integer division is needed. So, it is possible to require that the
result is an integer, effectively ignoring any decimal part:

>>> 8 // 24
>>> 7 // 23
Obviously this sometimes “loses” something, but this is sometimes the result wanted.
As something is lost, it is also possible to find the number that are “left over” after a
division (called the “modulus”):

>>> 8 // 20
>>> 7 // 21
Hint: A very common use case for the modulus operator (%) is to deermine whether an
integer value is odd or even. An even value “modulus 2” is 0, an odd value is 1.

Use Case

5.2. Values and Types 39

Yet Another Python Book, Release 0.5beta

Suppose we were dividing eggs into boxes of six. We need to divide the total number of
eggs we have by six, but a floating-pont answer would not be useful. We can’t put 6.33
eggs in a box! So here we would require integer division to tell us how many boxes will
be full, and we could use the modulus operator to find out how many eggs would be left
over.

Finally, there is also an operator to raise a number to a power.

>>> 2 ** 416
There are many other mathematical operators, useful in scientific applications. But
these are not included in strandard Python. It is easy to make them available, though,
as we will see later.

Precedence

These operators can be chained together to make more complex expressions. For exam-
ple:

>>> 2 + 2 - 31
In expressions like this the question arises of what order the operators are applied. In
the above example it makes no difference to the result, but in an expression like:

>>> 2 + 2 * 38
the order matters. You can probbly work out that in this expression the multiplication
has been applied before the addition. How so?

The rule is that if there is more than one operator in an expression the usual mathemat-
ical rules of precedence reply. You might remember them from maths courses, where
they are usually remembered as as BEDMAS or BODMAS.

B rackets.
E xponents (powers).
D ivision.
M ultiplication.
A ddition.
S ubtraction.

This explains why the multiplicattion happened first above; it has a higher precedence.
This can sometimes give unexpected results to the unwary when the operators in an
expression are not applied left-to-right, as in:

>>> 2 + 8 / 26.0
Here division happens first, and this also means that the result is a float. The trick is
to use brackets to change the order. So if left-to-right was needed hwre we could write:

40 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

>>> (2 + 8) / 25.0
In general, even when the BEDMAS order gives the result required it is a good idea to add
brackets to clearly show the intended order. So our first example here is best written
like this, even though the brackets actually have no effect.

>>> 2 + (8 / 2)6.0
This is a small detail, and Python probably does what you would expect, but it’s always
worth checking if the result of an expression isn’t quite what you expect.

More Operators

As well as the arithmetic operators, there are a few that get commonly used. They are
shorthands for common needs. For example, suppose we want to add one to the value
of variable. We could program like so:

>>> eggs = 3
>>> print(eggs)3
>>> eggs = eggs + 1
>>> print(eggs)4
This might seem odd at first, but the thing to remember is that the right-hand side is
evaluated first, and the result is assigned to the variable on the left.

Tip: A common source of confusion is the use of = in expressions like this, which is
different to the way that it is usually used in maths. This operation is called assign-
ment, and some languages use a different symbol for it. But Python sticks with one =
for assignment.

Assignment is different to equality. See later for that.

This operation (called incrementing) is so common that there is a shorthand:

>>> eggs = 3
>>> print(eggs)3
>>> eggs += 1
>>> print(eggs)4
This increments the valure by 1, but any value can go there. So we could decrement a
value by, say, 2:

>>> eggs = 3
>>> print(eggs)

(continues on next page)

5.2. Values and Types 41

Yet Another Python Book, Release 0.5beta

(continued from previous page)3
>>> eggs -= 2
>>> print(eggs)1
Multiplying and dividing also work like this, but are probably less common. Here are
two examples. See again that the division produces a float.

>>> eggs = 3
>>> eggs *= 2
>>> print(eggs)6
>>> eggs /= 3
>>> print(eggs)2.0
5.2.2 Focus on Floats

In some applications, integers are sufficient for numeric data, but in general we are
interested in numbers that have a floating-point (decimal) part. This is especially true
in scientific applications, but also true in simpler problems that involve working out,
for example, averages.

Floating-point decimal numbers are tricky to represent accurately in binary in much
the same way as some fractions (like one third) are impossible to represent as decimal
numbers. As before, some programming languages offer many different data types for
floating-point numbers, depending on the accuracy needed, but Python offers just the
one:

>>> speed = 3.0
>>> type(speed)<class 'float'>
Important: See here that 3.0 is a floating-point value, even though the number after
the decimal point is zero. 3 is an integer value representing the same amount, but they
are different data types.

>>> european_speed = 3.0
>>> type(speed)<class 'float'>
>>> african_speed = 3
>>> type(speed)<class 'int'>
A slightly interesting question is whether these two values are equal. What do you
think? We’ll check later.

Since they are also numeric values, floating-point numbers behave in a very similar
way to integers. Behind the scenes things are more complicated, as floating-point val-

42 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

ues are more complex to store accurately in binary, but happily that is mostly hidden.
So all the usual mathematical operators work as before:

>>> 2.5 + 3.25.7
>>> 2.5 - 1.451.05
>>> 2.5 * 3.58.75
>>> 3.5 ** 212.25
>>> 5.6 / 3.21.7499999999999998
Tip: Check that last result above. This is what you see when the result of an expres-
sion can’t be represented exactly. The answer is, obviously, 1.75, but that value can’t
be represented precisely in binary. (If you try the same expression on your calculator,
you will probably get 1.75 because the calculator will do some rounding). This can make
working with floating-point values tricky!

Floating-point values can also be combined with integers, where this makes sense to do
so. They are both numbers, after all. Arithmetic operations work as you’d expect. The
type of the result is determined by the types of the values. So an integer added to an
integer is another integer, while an integer added to a float is a float:

>>> 3 + 36
>>> 3 + 3.56.5
This is what you’d expect as any other result would lose the decimal part.

The usual rules of the order of operators also apply here.

Conversions

Since int and float values are both numeric it is useful to be able to convert between
them. Converting a floating-point value to an integer will lose something, of course,
but sometimes that doesn’t matter. An integer is easily converted to a floating-point,
with all that really changes being the internal representation.

Conversions can be done just using the name of the required types. Like this:

>>> speed = 3
>>> speed_float = float(speed)
>>> print(speed_float)3.0
>>> type(speed_float)<class 'float'>
>>> speed_float = 3.5

(continues on next page)

5.2. Values and Types 43

Yet Another Python Book, Release 0.5beta

(continued from previous page)

>>> speed = int(speed_float)
>>> print(speed)3
This code creates and integer, and then converts it to a float (see the .0). This floating-
point value is than changed, and the value is then converted back to an int. This loses
the decimal part, effectively rounding down.

Tip: A quick hack to convert an integer to a float goes like this. You might see it in some
example code and wonder what’s going on.

>>> speed = 3
>>> new_speed = speed * 1.0type(new_speed)<class 'float'>
Multiplying by 1.0 (a float) gives a float as the result.

5.2.3 String Theory

A string is a sequence of characters. Usually it represents something interesting like a
name or an identity number, or some other data that has been input by the user or read
from a file. Python has many useful features that allow strings to be manipulated, and
this is often quoted as a strength of the language. Python is very well suited for any
application that involves much processing of strings.

Languages

There are many programming languages, and many programmers would say they
have a favourite. The thing is that languages have strengths and weaknesses, and
some are more suited to different tasks than others. The trick is often to pick the
most suitable language for a given task.

Strings are denoted by quotation marks. Single ' or double quotes " are fine, and are
equivalent (but pairs must match). The only time the choice becomes important is if
the string itself includes a quotation mark. So these are all fine:

>>> 'Sir Robin''Sir Robin'
>>> "King Arthur"'King Arthur'
>>> "Galahad's Sword""Galahad's Sword"
Tip: If you type a value at the Python interpreter it will just print (echo) the value back,
like this.

44 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

The simplest way (and probably most common) way to process a string is to extract
certain characters. Characters in the string are given index numbers, from left to right.
So the first character is at index 0, the second at index 1, and the last has an index of
the length of the string less one52.

This last is a bit complicated, and it is surprisingly common to want to find the final
character of a string, so the last character also has index -1. Indexes work from either
end of the string, like so:

>>> 'Sir Robin'[0]'S'
>>> 'Sir Robin'[2]'r'
>>> 'Sir Robin'[-1]'n'
>>> 'Sir Robin'[-3]'b'
It is also possible to extract ranges of characters from a string, by providing two in-
dexes, a start and an end. If one is missed off, it defaults to the end of the string.

>>> 'Sir Robin'[0:3]'Sir'
>>> 'Sir Robin'[4:]'Robin'
>>> 'Sir Robin'[:-1]'Sir Robi'
This “slicing” seems a simple idea, but is incredibly powerful and useful in many appli-
cations. There are many, many, more built-in operations for string wrangling, which
we will meet later on.

Arithmetic can also work for string, where it makes sense. It makes sense to add two
strings:

>>> 'Eggs ' + 'Spam''Eggs Spam'
but it makes no sense to subtract one string from another. Similarly, it makes no sense
to multiply or divide strings, but it does make sense to multiply a string by an integer.
See what it does:

>>> 'Spam! ' * 4'Spam! Spam! Spam! Spam! '
We will return to strings later. But, just one last time, handling strings like this is one
of the main strengths of Python. So it will ge tthe attention it deserves later on.

52 Computer Scientists start counting at zero.

5.2. Values and Types 45

Yet Another Python Book, Release 0.5beta

5.2.4 Boolean News

A Boolean value is one that is either True or False. These values have been discussed
before because they are so fundamental. A value of this type is created in the usual way:

>>> brave_sir_robin = False
>>> type(brave_sir_robin)<class 'bool'>
Arithmetic operations make no sense with Boolean values but logic operations clearly
do. Check back here for a reminder of these.

First not takes one Boolean and “flips” it, so True becomes False, and False becomesTrue.

>>> brave_sir_robin = False
>>> run_away = not brave_sir_robin
>>> run_awayTrue
This will seem rather abstract at the moment, but we will use this a lot later on! The
other two operators, and and or combine two values as expected.

>>> eggs = True
>>> spam = False
>>> eggs and spamFalse
>>> eggs or spamTrue
>>> spam = True
>>> eggs and spamTrue
The use of Booleans is maybe not obvious at the moment, but they will be crucial later
when we need to control the order in which statements are executed. Before that, let’s
see how values can be combined and compared into Boolean Expressions.

Boolean Expressions

A Boolean variable holds either the valueTrueorFalse. Similarly, a Boolean Expression
is an expression that is either True or False. As with the truth of some statements we
met before, some expressions are self-evidently True:

>>> 1 == 1True
Important: Heads up! We have used the single equals sign before, for value assign-
ment. Two equals signs, as above, is used for comparison. So this expression is testing,
ah, whether 1 equals 1, which obviously it does.

More usefully, we can test whether a variable holds a certain value:

46 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

>>> eggs = 6
>>> eggs == 6True
Boolean operators allow for comparing values like this. Look again at the overloading
of what an equals sign does! Here are the more common ones:

Operator Meaning True Example False Example
== Is equal to 1 == 1 3 == 2!= Not equal to 1 != 0 1 != 1> Greater than 3 > 1 1 > 0< Less than 1 < 3 0 < 2>= Greater or equal to 2 >= 1 2 >= 3<= Less than or equal to 1 <= 1 2 <- 0

These examples all use integers. The same operators will work with floating-point num-
bers, in the obvious way. Integers and floating-point numbers can be compared, but
care is needed because of the difficulty of storing floating-point values exactly.

Tip: In practice, avoid using == with floating-point values. The results are not always
what you would expect because sometimes storing the value loses some precision.

We did wonder whether 1 (the integer) was equal to 1.0 (the floating-point). Turns out
they are:

>>> 1 == 1.0True
A similar experiment will also reveal that, just maybe, Booleans are integers in dis-
guise!54

>>> 1 == TrueTrue
>>> 0 == FalseTrue
And finally, comparison operators also work with strings. The meaning of “less than”
and friends is based on the internal (numeric) way strings are stored, but is effectively
alphabetical.

These operators can be combined with the Boolean operators to give complex expres-
sions. Suppose we were interested in checking that a number was between 0 and 100
inclusive. That involves three operators:

>>> mark = 65
>>> mark >= 0 and mark <= 100True

(continues on next page)

54 Which is fine and, if you think about it, the obvious way of doing it!

5.2. Values and Types 47

Yet Another Python Book, Release 0.5beta

(continued from previous page)

>>> mark = 150
>>> mark >= 0 and mark <= 100False
Building up expressions like this will become very important later on.

A final operator is worth a mention here. The in operator gives a Boolean value de-
pending on whether or not one value is contain inside another. This is often used with
strings:

>>> 's' in 'spam'True
>>> 's' in 'eggs'True
>>> 'spam' in 'fritters'False
This is really just a shorthand for a whole bunch of and tests together, but it can be
useful. It also has the happy side-effect of making code more readable.

Now, let’s try and formalise what this chapter has discussed.

5.3 Values and Variables

To call it what it should be called, a value in a program is a variable. A variable has a
type, and a value. Usually the value changes as the program runs. In Python a variable
is created just by giving it a value:

>>> foo = 3
This creates a variable named foowith the value 3 . As we have seen before foo is given
a type of int, which is inferred from the initial value.

Tip: Remember that 3 is an integer but, 3.0 is a floating-point. And if it comes to that'3' is the string that represents the digit three.

It is important to pick a name for the variable (correctly, this is called its identifier) that
describes its purpose. The example above is meaningless, so it is much better to pick an
identifier that explains what the value is:

>>> number_of_knights = 3
So now we can see that this value is presumably going to be used to store the number
of knights that have done something, or otherwise become interesting in some way.

Meaningful identifiers are good. But there is a balance to hit between names that are too
long and names that are too short and cryptic. These are both bad choices, for reasons
that should be obvious:

48 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

>>> nok = 3
>>> the_number_of_knights_seeking_the_holy_grail = 3
A further downside to long identifiers is that errors in spelling them can lead to errors
in programs that are very, very hard to find53.

By convention, variable identifiers in Python are written in lower_snake_case. With
words separated by underscores, and everything in lower case. Programs in this book
will stick with this convention, as should you.

Important: Conventions like this are important. They may seem pointless now, but
if your programs don’t follow them you will confuse experienced programmers if you
ask for help. In a work setting, if you didn’t follow them you would just be told to go
away and rewrite the code “properly”!

The thing to remember is that most programs are developed and maintained by teams.
It makes a lot of sense if all the members of the team use conventions like this to ensure
that their code is consistent and understandable.

Another example of a convention is when a program needs to handle a constant value.
This is a variable that will be used in the program, but the value will always be the same.
A variable that will not vary, if you like. By convention, the identifiers of these values
are witten in UPPER_SNAKE_CASE. This is irrelevant to Python, but very useful to some-
one reading a program. So when a programmer sees:

>>> KNIGHTS_IN_HORSE = 4
It is clear that this is a value that is used in the program, but which will never change.

Important: This might seem a bit odd, but the idea is to define the constant value in one
place, and then potentially use it in many places. If it needs to be changed, it changes
in just the definition, so is just changed the once.

Using constants like this also improves the readability of programs. It is oftem said that
programs are read much more often than they are written!

5.4 Input and Output

Armed with variables, there are two more things needed before we can write a useful
program. First, we need to be able to take some values as input, and then we need to
output the results. The simplest cases here are to take input that the user types on the
keyboard, and to display the results on the screen. More realistic programs read or write
files, or use graphical interfaces, but the simple “screen and keyboard” approach will
do for now.

For the moment we will also assume that the user behaves as expected, and enters val-
ues that make sense in the current program. Obviously in real life users do not behave
that way, but assuming they do will simplify the problem for now!

53 Although obviously your IDE should quickly flag up such spelling issues.

5.4. Input and Output 49

Yet Another Python Book, Release 0.5beta

5.4.1 Getting Input

To get some input from a user we need to display a helpful prompt, and then wait while
they type. Usually, their input will be ended when they hit “Enter” or “Return”. Once
we have the input we need to store it away in a suitable variable. There is a lot going on
here, but Python provides a single command to do the job.

The input command displays a prompt, and waits for the user to type. Once the user
hits Enter, the value entered is returned and can be stored in a variable. The value is
always returned as a string, so sometimes there is a need to convert it to a required
type. It is very unlikely that the user would be asked to enter a Boolean value, so the
conversion is almost always to an integer or floating-point value.

We briefly met the way to convert values between types earlier in this chapter. In these
examples, remember that entering the identifier of a variable at the Python prompt
just displays the current value of that variable:

>>> name = input('What is your name? ')What is your name? Sir Robin
>>> name'Sir Robin'
>>> number_of_knights = int(input('How many knights follow the quest?
→˓'))How many knights follow the quest? 5
>>> number_of_knights5
>>> speed = float(input('Enter the average speed of an African
→˓Swallow: '))Enter the average speed of an African Swallow: 37.5
>>> speed37.5
Take a close look at the brackets in the second and third examples. There are two func-
tions used - int and float - to convert the values. The brackets need to match up, as
shown. Your IDE should show an error if the brackets match incorrectly.

This will be enough, for now, to allow us to write programs that take input. In later
episodes we will need to validate the input for its type, and possibly its value, but this
will do for now. Specifically, in the next chapter we will see how to cope if the user
enters values of the wrong type, or at least data that cannot be converted to the correct
type.

50 Chapter 5. Somewhere to Start

Yet Another Python Book, Release 0.5beta

5.4.2 Displaying Results

The command to display a value on the screen is print. We saw it earlier, but passed
over it. It takes either a literal value, like this:

>>> print('Hello, World')Hello, World
Or it can take a variable identifier (notice there are no quote marks in the print here):

>>> message = 'Spam and Eggs'
>>> print(message)Spam and Eggs
The print command can also print a collection of values. The easiest way to do this is
to make sure they are provided separated by commas, and by default they are printed
with spaces between.

>>> swallow_count = 3
>>> print('There are', swallow_count, 'swallows.')There are 3 swallows.
There are other options, but as with input, this will do for now. Keep it simple!

Tip: Those spaces can be annoying, and are not always wanted. The quick fix at this
point is to add an optional “separator” to the print command, like this:

>>> print('Spam', 'Eggs', 'Spam')Spam Eggs Spam
>>> print('Spam', 'Eggs', 'Spam', sep='')SpamEggsSpam

5.5 Takeaways

There is a lot in this (rather long) chapter. But programming really is all about reading
some values, storing them, processing them, and then making the results available. By
now you should:

1. Understand that values have different types. And know which basic (primitive)
types Python provides.

2. Be able to create values at the Python Interpreter, and carry out operation on them.

3. Know how to prompt a user to enter some values, and how to convert that to a
required type.

4. Know how to display results on the screen.

We can actually write some reasonably useful programs now. The main gap is how to
do different things depending on what the user enters. We’ll look at that in a while, but
first we’ll think about what to do if the user doesn’t behave as expected. Users are like
that . . .

5.5. Takeaways 51

Yet Another Python Book, Release 0.5beta

52 Chapter 5. Somewhere to Start

CHAPTER

SIX

WHEN THINGS GOWRONG

Many programming books carry on at this point with writing some programs. They
tell the new programmer not to worry about what happens if the user does something
unexpected, or if something else goes wrong. That is all a bit artificial, because users do
often do awkward things. So here we will extend our programming by looking at some
basic error situations.

6.1 A Simple Error

Here’s a problem:

Buses for Students

A school is running a trip to a local theme park. Buses have been hired. Each bus
can seat 46 students. A program is required that reads the number of students who
have applied to join the trip, and will determine how many buses are needed, and how
many students will be left behind.

We can sketch out a solution along these lines:

1. Set the number of students on each bus as a constant, so we can easily see what
happens if we get bigger or smaller buses.

2. Display a prompt.

3. Read the number of students, as an integer.

4. Calculate the number of buses needed using integer division (we cannot have half
a bus).

5. Use the modulus (remainder) operator to find how many students will be left.

6. Print the results.

And this matches neatly to a program, which might look something like this:

Listing 1: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

(continues on next page)

53

Yet Another Python Book, Release 0.5beta

(continued from previous page)

STUDENTS_PER_BUS = 46
number_of_students = int(input('How many students are there? '))
buses_needed = number_of_students // STUDENTS_PER_BUSstudents_left = number_of_students % STUDENTS_PER_BUS
print('Buses Needed: ', buses_needed)print('Students Left:', students_left)

Running the program, the results would look promising:

How many students are there? 62Buses Needed: 1Students Left: 16
The first line is where the user has entered a value. The results look right.

Now, look closely at this line of the program:

Listing 2: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

STUDENTS_PER_BUS = 46
number_of_students = int(input('How many students are there? '))
buses_needed = number_of_students // STUDENTS_PER_BUSstudents_left = number_of_students % STUDENTS_PER_BUS
print('Buses Needed: ', buses_needed)print('Students Left:', students_left)

It does quite a lot. It displays a prompt, reads the user’s input, converts the string en-
tered to an integer (input always reads a string), and assigns the result to a variable.
All good, but what would happen if the user entered a value that could not be converted
into an integer? The quickest thing to do it to try it and see by entering lots instead of
a number:

How many students are there? lotsTraceback (most recent call last):File "school_bus.py", line 7, in <module>number_of_students = int(input('How many students are there? '))ValueError: invalid literal for int() with base 10: 'lots'
Eek! This message tells us that the program has failed. It tells us which line this was (line
7), and displays the offending line. There is also a clue to the error (“invalid literal”), and

54 Chapter 6. When Things GoWrong

Yet Another Python Book, Release 0.5beta

a name for it (ValueError). Obviously we would rather the program ended rather more
elegantly, and ideally gave the user more of a clue as to what went wrong. Lets’s see how
to do that.

6.2 Handling an Exception

This error is correctly called an Exception, because it represents an exception to what
should have happened. Python is unable to continue with the program but, before all
is lost, it is giving us two things:

1. An exception type, that indicates in general terms what has happened. Here it
is ValueError, so we know it is a problem with a value that Python has tried to
process.

2. A message that contains a hint of what Python believes has gone wrong. Here, the
literal value entered is invalid.

There are to approaches to modifying the program so that it can handle this error:

1. We could write code that would examine the string entered, determine whether it
will convert to an integer, and carry on if it looks fine, printing an error otherwise.

2. We could convert the string entered, whatever it is, and deal with any error that
might happen.

The first of these approaches is called Look Before You Leap (LBYL) and is a common ap-
proach in many older languages. It can lead to complex programs, where all the error-
checking can make it difficult to see what is supposed to happen.

The second is EAFP, or Easier to Ask Forgiveness than Permission. This is a more mod-
ern approach, and is common in most newer languages. It tends to keep code that deals
with errors all in one place, leaving what should happen alone.

Important: Python prefers EAFP. A lot.

We aim to be Pythonic here, so EAFP is what we will use.

Provided we know what exception might happen, it is easy to amend the code. In this
example we know that we are concerned about the possibility of aValueError. So all we
need to do is tell Python what to do if such an error happens. It looks like this (changes
are highlighted):

Listing 3: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

STUDENTS_PER_BUS = 46
try:number_of_students = int(input('How many students are there?

(continues on next page)

6.2. Handling an Exception 55

Yet Another Python Book, Release 0.5beta

(continued from previous page)

→˓'))
buses_needed = number_of_students // STUDENTS_PER_BUSstudents_left = number_of_students % STUDENTS_PER_BUS
print('Buses Needed: ', buses_needed)print('Students Left:', students_left)

except ValueError:print('Please enter an integer.')
So we try to do what is expected (see that this is now indented so it is “inside” the try).
If there is a ValueError the program jumps straight down to the matching except and
does what it says there. So now:

How many students are there? lotsPlease enter an integer.
And after any changes it is always important to check that the program still works as
before:

How many students are there? 58Buses Needed: 1Students Left: 12
Looks good! This approach is much easier than trying to examine a string to see if it
could represent an integer, and has the extra benefit of leaving the original program
logic untouched.

Let’s extend this to make the program a little more useful. Maybe we have the option
for different sizes of bus.

6.3 Another Exception

To modify the program to deal with different bus sizes, we are going to need to ask the
user to enter the number of students who will fit on one bus. So the bus capacity is no
longer a constant, but a variable. So the first attempt is to change the constant STU-DENTS_PER_BUS to a variable that is entered (and to remember to change its identifier
to lower-case as it is no longer constant).

Hint: Renaming a variable or constant is common. Don’t be tempted to use some sort
of search-and-replace to do this, as al sorts of unexpected things could happen if the
name exists elsewhere. You will find that your IDE has an intelligent way to do this
(look for options called Refactor).

So now we have:

56 Chapter 6. When Things GoWrong

Yet Another Python Book, Release 0.5beta

Listing 4: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

try:students_per_bus = int(input('What is the bus size? '))number_of_students = int(input('How many students are there?
→˓'))

buses_needed = number_of_students // students_per_busstudents_left = number_of_students % students_per_bus
print('Buses Needed: ', buses_needed)print('Students Left:', students_left)

except ValueError:print('Please enter an integer.')
This is fine, and if we tried it we would find that all still worked. But could anything else
now go wrong? If we thought about it we might realise that the user could enter zero
for the bus capacity. This is nonsense, but is an integer, so the program would carry on
to try to divide the number of students by zero. Dividing by zero is an error, so what
would happen? We expect an exception, but what would it be called?

The quickest way to find out is to fire up the Python Interpreter and find out.

Hint: You can access the interpreter from inside your IDE. No need to change windows!

>>> 2 / 0Traceback (most recent call last):File "<stdin>", line 1, in <module>ZeroDivisionError: division by zero
The information we want is in the last line. The exception is a ZeroDivisionError.
Good name for it. To catch this error, all we need to do is add it to the program. The
changes are isolated at the bottom, with the other handling of the exceptions - this is
why EAFP usually gives neater programs.

Listing 5: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

try:students_per_bus = int(input('What is the bus size? '))number_of_students = int(input('How many students are there?
(continues on next page)

6.3. Another Exception 57

Yet Another Python Book, Release 0.5beta

(continued from previous page)

→˓'))
buses_needed = number_of_students // students_per_busstudents_left = number_of_students % students_per_bus
print('Buses Needed: ', buses_needed)print('Students Left:', students_left)

except ValueError:print('Please enter an integer.')
except ZeroDivisionError:print('Bus size cannot be zero.')

6.4 Exceptions are Good

Suppose we look again for more errors. We might wonder what would happen if the
user entered nothing at all. That is obviously an error, but what happens when Python
attempts to convert nothing into an integer?

A quick experiment would show that what Python does in this case is generate a Val-ueError! So as it turns out we have already caught that possible error. The worst case
is that we will have to rewrite the error message.

EAFP is based around the idea that most of the time the user will do what they are ex-
pected to do. So if they do something else that is an exception to the normal, and should
be handled as such. It is much easier to write programs that assume all will be well, but
to include code to show that something has gone wrong. LBYL in contrast often involves
a lot of code to handle situations that will very rarely occur.

Note: Sometimes an error situation is considered so unlikely that there is no point in
adding code to handle it. The most common example of this is the Blue Screen of Death
<https://en.wikipedia.org/wiki/Blue_screen_of_death>`_ in Windows.

It’s worth noting that many new programmers instinctively go for LBYL approaches,
and start writing insanely complex code when a simple bit of LBYL would solve the prob-
lem. That is why we have discussed EAFP and exceptions here before getting to the ideas
needed to write LBYL! But the rule remains, to always prefer EAFP if at all possible.

58 Chapter 6. When Things GoWrong

https://en.wikipedia.org/wiki/Blue_screen_of_death

Yet Another Python Book, Release 0.5beta

6.5 More Errors

So what errors remain here> There are still things that could go wrong with this pro-
gram. The most obvious is that the user could enter a negative integer for either of the
required values. This is obviously nonsense. The program would display results because
it has no reason not to. But there should be some way to stop that - this is coming up
next!

And arguably there could be some sanity checks on the input. Is a bus with a capacity
of 3000 likely? In practice there would only be a small number of capacities available,
and we might pick from a list. And a really good program would take the number of
students, and work out the best collection of bus sizes to arrange.

Next section we’ll look at ways to approach these kinds of problem.

6.6 Takeaways

Exceptions are important. There are a basic part of Python, and handling them is fun-
damental.

1. You should now understand what an Exception is, and how to spot one.

2. You should be able to trap an Exception in a program, and display an error mes-
sage.

3. You should be able to use the Python Interpreter to investigate the types of Excep-
tion that are generated in certain cases.

4. You should understand LBYL and EAFP approaches, and particularly why EAFP is
preferred in Python!

There is surprisingly little left to cover before we can say we’ve done the basics of pro-
gramming. Let’s get on with it!

6.5. More Errors 59

Yet Another Python Book, Release 0.5beta

60 Chapter 6. When Things GoWrong

CHAPTER

SEVEN

STAYING IN CONTROL

Previously we have looked at exceptions and how they can be used to catch some error
situations.

These have been errors that mean that Python cannot carry on because it makes no
sense to process the values it is given. But what about the case where the values do
make sense (in that they are the correct type), but are invalid for some other reason.

Important: Remember that the Python interpreter has no concept of what the data
it is processing represents. It just sees a bunch of numbers, strings, and so on. It is
the programmer that understands what these mean, and knows how to determine if
they are invalid. A programmer might call a variable age, but the interpreter just sees
a number. It has no idea that a negative value (or a value over 130 for that matter) is
invalid.

Let’s see how to deal with these errors. We might say that we are dealing with values
that are legal, but invalid. We’ll start with a simple example, and then look at some
more complex ones.

7.1 Values in Range

Remember the example of allocating students to buses. There was an error when the
capacity of a bus was entered as 0 (it provoked a ZeroDivisionError), but what about
if -10had been entered? This is also clearly nonsense but the Python interpreter (which
has no knowledge of buses) would happily carry on, producing potentially confusing
results.

>>> students = 100
>>> bus_capacity = -10
>>> buses_needed = students // bus_capacity
>>> buses_needed-10
To stop this we need to apply a small amount of logic to stop the calculation if the values
entered are outside the known possible range. Usually, but not always, there will be
an upper and a lower range. Let’s jump in and fix the program so that the number of
students has to be greater then 1. For clarity, we’ll leave off the code that handled the
exceptions for the moment, and go back to the bus size being set as a constant.

61

Yet Another Python Book, Release 0.5beta

Listing 1: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

STUDENTS_PER_BUS = 46
number_of_students = int(input('How many students are there? '))
if number_of_students > 1:buses_needed = number_of_students // STUDENTS_PER_BUSstudents_left = number_of_students % STUDENTS_PER_BUS

print('Buses Needed: ', buses_needed)print('Students Left:', students_left)
The program is now providing a condition, and showing that some statements should be
executed only if the condition turns out to be True. The statements affected by this are
indented across. So now if an incorrect value was entered the program would produce
no output at all.

This is fine, but as it stands the user, looking at a program generating no output at all,
might be a little baffled about what’s going on. It would be better to provide them with
some sort of useful error message. Or we could point them in the direction of how to use
the program properly. To do this, we need to say what should happen if the condition
is False. It looks like this:

Listing 2: school_bus.py
#!/usr/bin/env python3
if __name__ == '__main__':

STUDENTS_PER_BUS = 46
number_of_students = int(input('How many students are there? '))
if number_of_students > 1:buses_needed = number_of_students // STUDENTS_PER_BUSstudents_left = number_of_students % STUDENTS_PER_BUS

print('Buses Needed: ', buses_needed)print('Students Left:', students_left)
else:print('Error. Number of students cannot be less than 1.')

The else states what happens when the condition at the if is False. It is indented
so that it is directly below its matching if, so there is no need for the condition to be
repeated.

62 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

Important: This works because a Boolean condition is always one of TrueorFalse. The
condition in a statement like this can be anything that evaluates to a Boolean value.

The Boolean condition, being True or False (and having no other possible values)
means that one of the if or else will always be executed, but never, of course, both.

That’s enough for simple cases. Before looking at more elaborate ones, let’s consider
what’s going on here.

7.2 Flow of Control

The example above introduced a conditional statement. This is a statement that allows
us to control the flow of execution in a program. Unless we specify otherwise, a program
will flow from the top to the bottom, with the interpreter executing each statement
in order. This is rarely what is needed, because we want to handle errors, deal with
different user input, and so on.

Tip: A Conditional Statement in a programming language is often referred to as the If
Statement, just because of the word that introduces it in most languages. Either term
is fine.

A conditional statement allows a programmer to mark that some statements should
be executed only if some condition is true. Optionally, there may also be statements
that are an alternative, to be executed only if the same condition is false. Since any
Boolean statement is either true or false, one or the other sets of statements will always
be executed.

Important: There does not need to be an alternative. So, in Python, the else part is
optional.

Tip: If you think about it, it is always possible to write a conditional statement in two
ways, with true and false either way round. It rarely matters, but the best plan is always
to pick the one that gives the most natural-looking code.

Python indicates which statements are affected by a control statement using indenta-
tion. The statements affected are all indented by a certain number of spaces, directly
under the control ststement. When statements are “un-indented” they are no longer
affected. Indentation also shows which else matches which if - the else is indented
so that it is directly below the corresponding if.

So here the first print is affected by (or “inside”) the if, but the second isn’t:

if number == 1:print('Inside the if!')print('Outside the if!')

7.2. Flow of Control 63

Yet Another Python Book, Release 0.5beta

And here, the else is aligned with its if:

if number == 1:print('Inside the if!')
else:print('Inside the else!')
This alignment is important, because there can be a conditional statement inside an-
other, liks so:

if number == 1:print('Inside the if!')
if another_number == 2:print('Inside both the ifs!')

else:print('Belongs to the first if!')
Spaces are usually used for indentation. TAB characters can be used55, but most IDEs
will silently turn them into spaces. Any number of spaces can be used, but the PEP-8
standard calls for 4, and this is what most IDEs will do.

Important: The indentation is not just for show. It is part of the Python language, and
is used to show which statements are affected by which control statements. If you get
the indentation wrong, the program will not work.

7.2.1 More Choices

The examples so far have allowed for two possibilities, based around a single condition.
Sometimes this is all that is needed, like when a user enters a value that needs to be
tested for a range, but in others it is not enough. Maybe we need to test a value, and
carry out different actions depending on several possibilities. Here’s an example:

Exam Grades

A student takes an exam, and gets a mark on a scale of 0 to 100. The pass mark is 40.
Any mark of 70 or over is recorded as a Distinction. A program needs to read the exam
mark and print the corresponding result - Pass, Fail, Distinction.

So here we need to test whether the grade and test it twice. This could be done several
ways, but the neatest way is probably to check for a Distinction, and then for a Pass, like
this:

55 But their use is controversial, and best avoided unless you want to end up in arguments. It’s like the
dark/light theme in the IDE thing.

64 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

Listing 3: exam_result.py
#!/usr/bin/env python3
if __name__ == '__main__':

mark = int(input("Enter the student's mark: "))
if mark >= 70:print('Distinction!')
elif mark >= 40:print('Pass!')
else:print('Fail!')

Three things to notice about the code here:

• elif allows for other choices to be tested. The complete statement will execute
the first condition that turns out to be true.

• else serves as a “catch all” if none of the tested conditions are true.

• The final condition can be a catch-all because if the mark is not a Distinction or a
Pass it must be a Fail, so there is no need for an explicit check.

And also:

• The string used for the input prompt includes a single quote (an apostrophe), so
the string itself is in double quotes.

• There are be any number of elif lines, but the order matters in that the code un-
der the first True is executed (all the others are passed over).

• There does not have to be a catch-all else56.

7.2.2 Nesting

As it stands, the exam result program is fine, but if we look back at the earlier programs
in this chapter we might reflect that there is no attempt to check that the mark entered
is valid! We should surely check that it is between 0 and 100, and provide an error if
not. There are two ways to do this. One would be to add the checks to the existing tests,
but that might obscure what as going on. And, anyway, we have most of what we need
from the earlier program57 so we might as well reuse it.

The trick will be to put one conditional inside another. This is usually called nesting,
and is where the indentation will really come in handy to show what’s going on. Here
it is:

56 A common misconception among new programmers is, for some reason, that there has to be an else.
This is not the case. Really.

57 They were people getting on a bus in the first example, and it’s an exam grade now, but the tests are
the same. This is abstraction - spotting a pattern and reusing the solution.

7.2. Flow of Control 65

Yet Another Python Book, Release 0.5beta

Listing 4: exam_result.py
#!/usr/bin/env python3
if __name__ == '__main__':

mark = int(input("Enter the student's mark: "))
if 0 <= mark <= 100:

if mark >= 70:print('Distinction!')
elif mark >= 40:print('Pass!')
else:print('Fail!')

else:print('Mark out of range')
As before, the first test could be written several ways. It all comes down to what “feels”
best. Here we have used the way that is closest to how the test would be said (“The mark
must be greater than or equal to zero and less than or equal to 100.”) Notice how the
indentation clearly shows which else belongs with which if.

Note: If you are typing along, your IDE might have taken exception to the first if line,
and might be prompting you to rewrite it. This is because Python provides a shorthand,
so this:

if mark >= 0 and mark <= 100:
can be shortened to:

if 0 <= mark <= 100:
Which you use going forward is up to you.

7.2.3 When Not to Test

Finally, there is one remaining source of errors in this program. What happens if the
user enters something other than an integer? If you try this you will see that the pro-
gram crashes. Obviously it would be preferable to inform the user if their mistake.
This will not be much work, because we did just this in the previous chapter. There
we checked that the number of pupils getting on a bus was an integer, so we can reuse
that idea here.

Important: Remember that we prefer to use EAFP programming rather than LBYL. So
we will not examine what the user types in to see if it really is an integer. We will just

66 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

carry on trying to use the value input and, if it turns out not to be an integer, we will
pick up the pieces when an error is thrown.

Looking back, we see that the exception generated when the user enters something in-
valid will be a ValueError, so all we need to do is provide some quick error-handling to
deal with this.

Listing 5: exam_result.py
#!/usr/bin/env python3
if __name__ == '__main__':

try:mark = int(input("Enter the student's mark: "))
if 0 <= mark <= 100:

if mark >= 70:print('Distinction!')
elif mark >= 40:print('Pass!')
else:print('Fail!')

else:print('Mark out of range')
except ValueError:print('Please enter an integer!')

Check out that indentation, and how it shows the program structure.

Tip: In this example, the programmer has also left a few blank lines. This is a hope-
ful attempt to make the structure of the program more obvious to someone reading it.
Python just ignores these lines, but they can help a reader.

Remember that a program is read by a person more often than it it run!

7.3 Non-Linear Programs

This is all fine, and the program we have here should cover all the possibilities. But it
would be preferable if the user was given the chance to re-enter a value if they make a
mistake. It might also be handy to be able to run it for a bunch of students.

In summary, we are now able to write programs that run top-to-bottom, and can skip
over some lines depending on some conditions. The missing piece58 is to be able to go

58 As it happens, that is pretty much all that remains to do. There isn’t much more to programming after
that.

7.3. Non-Linear Programs 67

Yet Another Python Book, Release 0.5beta

back up in the program, or to return to some previous place in the code. Let’s do that
next!

7.4 Repeating Yourself

We often find ourselves repeating tasks. We might look through a drawer of socks un-
til we find a matching pair. Or we might look through that box of festive chocolates,
avoiding the toffee ones, until we find one we like. Or maybe we are asked to boil six
eggs for breakfast, one at a time.

These kinds of repetition also occur in programming, where they are usually called
loops. There are two, well, really three, types. To start with the two:

Determinate Loops
This is where it can be known, before the first time the task repeats, how many
times it will be done. It might be different each time the program runs, but it
is always known. It’s the eggs in the examples above - that will always happen
exactly six times, no more, no less.

Indeterminate Loops
This is where it is now known, and cannot be known, how many times the task
will be done before it starts. The number of times depends on something that it
unknown. This is the socks in the examples above - you might get lucky and find
a pair in the first two, or you might need to look at a lot more.

The “three” comes in because there are two subtly different types of indeterminate
loop. Sometimes it can be shown that the loop will always execute at least once, and
sometimes it might never execute at all. To use the other example above, if we know
that the tub of chocolates is full, we will always check at least one sweet one our way
to finding one that is not toffee (so the checking for toffee will always happen at least
once). Or, if the tub is open and could be empty, we might not check any sweets at all,
so no check for toffee at all.

To implement these in a program there is only really a need for one new programming
control statement, to give a loop. But it is convenient to have at least two, one for de-
terminate loops, and one for indeterminate loops. Some languages provide three, with
two for the indeterminates. Python goes with two, but a particularly Pythonic way of
handling indeterminate loops is usually used. We’ll look at these three now.

7.4.1 Determinate Loops

This is the case where it is known, in advance, how many times some statements need to
be run. These loops are often referred to as for loops, because this is the keyword used
to introduce them in many languages. Let’s jump in with a simple example. Suppose
we want to generate a table converting Fahrenheit temperatures into Celsius. A quick
Google and some experimenting at the Python Interpreter would let us work out how
to do the conversion:

>>> f = 80
>>> c = (f - 32) * 5 / 9

(continues on next page)

68 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

(continued from previous page)

>>> c26.666666666666668
This is easy to put in a program that allows our user to enter the value to convert59:

Listing 6: f2c.py (with User Input)

#!/usr/bin/env python3
if __name__ == '__main__':

fahrenheit = float(input("Enter the Fahrenheit Temperature: "))
celsius = (fahrenheit - 32) * 5 / 9
print('Celsius Equivalent is ', celsius, 'C', sep='')

Note: The sep in the print statement simply stops Python printing a space between
each part of the output. It’s just there for neatness.

This is fine, but we wanted to generate a table. As it stands the user would have to run
the program over and over, recording the results to generate such a table. It would be
much neater do just display the table for a range of values.

Happily, Python provides a range function that will generate these values. Let’s start
by displaying the results for Fahrenheit values from 0 to 10. This is not very sensible
if this was part of a weather app, but we’ll fix that later on. To achieve a table, we need
to remove the user input, and just run the conversion on a range of values. We’ll start
with zero to 10:

Listing 7: f2c.py
#!/usr/bin/env python3
if __name__ == '__main__':

for fahrenheit in range(11):celsius = (fahrenheit - 32) * 5 / 9print('Fahrenheit ', fahrenheit, 'F Celsius Equivalent is ',
→˓celsius, 'C', sep='')

If you run this program you will see that all the indented lines after the for line are
repeated. They are executed 10 times, with the value of fahrenheit ranging from 0 to
10. Some notes:

• The count starts at zero. As we have seen before, everything in programming
starts at zero.

• This means that the value in the range must be the number of lines to print, not

59 Note that this program allows the user to enter a floating-point value.

7.4. Repeating Yourself 69

Yet Another Python Book, Release 0.5beta

the highest value. We wanted all the values from 0 to 10 here, so that’s 11 lines.

• And that print statement is getting messy. We’ll add a fix for that next chapter.

You might have noticed that 0F is really very cold, and that our table does not yet reach
normal temperatures that might be seen in a weather app. We can tweak the program
to display temperatures from, say, 25F to 80F, easily:

Listing 8: f2c.py
#!/usr/bin/env python3
if __name__ == '__main__':

for fahrenheit in range(30, 81):celsius = (fahrenheit - 32) * 5 / 9print('Fahrenheit ', fahrenheit, 'F Celsius Equivalent is ',
→˓celsius, 'C', sep='')

So now we provide the start point and the end point, remembering that the end must
be one more than the final line we require.

Important: Fiddly details like the final value needing to be one more than you might
think are hard to remember. Never be afraid to just run the program and see what
happens. If it doesn’t work quite as planned, just go back and change it.

Finally, we might decide that the table is a bit too detailed, and that it will be enough to
give the equivalents in increments of 5. This sounds tricky, but turns out to be simple
as range allows us to specify the increments.

Listing 9: f2c.py
#!/usr/bin/env python3
if __name__ == '__main__':

for fahrenheit in range(30, 81, 5):celsius = (fahrenheit - 32) * 5 / 9print('Fahrenheit ', fahrenheit, 'F Celsius Equivalent is ',
→˓celsius, 'C', sep='')

See that range allows us to specify the start, end, and increment. If there is only one
value it assumes that the start is zero and the increment is 1, as this is the most common.
Two numbers are taken to be a start and an end with an increment of 1. Three numbers,
and you’re in full control.

The increment can be negative if there is a need to count down; in this case the end
must be less than the start! (This is always mentioned in programming books at this
point, but practical uses are rare, so you might want to forget it now).

The version of the program above has all the values coded in. So we can look at the
program now, and know how many times the loop will execute. That’s what makes it
determinate. But the values could be entered by a user, like this:

70 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

Listing 10: f2c.py (with User Input)

#!/usr/bin/env python3
if __name__ == '__main__':

start_f = int(input('Enter the starting value: '))end_f = int(input('Enter the ending value: '))increment = int(input('Enter the increment '))
for fahrenheit in range(start_f, end_f, increment):celsius = (fahrenheit - 32) * 5 / 9print('Fahrenheit ', fahrenheit, 'F Celsius Equivalent is ',

→˓celsius, 'C', sep='')
The loop here is still determinate, and we can still use for and range. We can’t tell
from the program now how many lines it would print, but just before the loop starts
that number would be known (we could print it out if we wanted to). So it’s still a de-
terminate loop, even if the number of times it will run will vary.

Note: Before we move on, look again at that program. It really would need some checks
that the values entered were integers, and that the start vakue was less than the end.
And that the increment would eventually get us from the one to the other. So much of
a program is devoted to handling what the user might do!

7.4.2 Indeterminate Loops

These are loops where the number of executions cannot be forecast in advance (that
is, before the first execution). This is usually because they are required to run until
something happens, or while something is true. Most languages use the keyword while
to introduce these, so they are often just called while loops.

Note: Remember there are two possibilities: the loop might always execute at least
once, or the loop might never execute at all. Some languages offer different ways of
writing each one, Python does not. One of Python’s design philosophies is that there
should be one way of doing something.

A while loop causes statements to execute as long as (“while”) some condition is true.
The statements affected are indented, as usual. Here’s an example.

sweet = ''
while sweet != 'caramel':sweet = input('What sweet did you find? ')

if sweet != 'caramel':print('Ugh! Try again!')
(continues on next page)

7.4. Repeating Yourself 71

Yet Another Python Book, Release 0.5beta

(continued from previous page)

print('Yay! Found one!')
This snippet will repeat the prompt until the user enterscaramel. The finalprint state-
ment is not indented, so only gets executed once the loop has finished.

That is all there is to it. Some things to bear in mind:

• If the loop condition is False initially, the statements inside the loop will never
execute.

• Something inside the loop must potentially change the value of the condition, else
the loop will never exit. This is an infinite loop, and is usually a problem!

• The loop can contain other statements, including other loops.

• After the last statement inside the loop (shown by the indentation) the statements
start over. There is no need to include anything to make this happen.

Now, an idea that we will return to later is that an important aspect of good program-
ming is not to repeat yourself. Spot the repetition in that example loop? Let’s fix it.

More Cunning Loops

Important: What follows in this section is in many ways specific to Python, and the
way Python is usually used. If this book was about, say, Java, this section would not be
here! An important part of using any language is to use it in the accepted way that has
been developed by its community.

In the Python community, we say that we aim to be Pythonic.

The loop up above contains duplication. Or, if you prefer, it includes information about
our problem twice. Or, to put it another way, if we wanted to change one thing we would
have to make two changes to the code. Suppose for some mad reason we wantedtoffee
instead of caramel - we would have to make two changes. That’s bad.

The Pythonic way around this works as follows. It makes use of an infinite loop, and an
explicit statement to exit the loop. It gives neater code, possibly at the cost of making
the loop’s condition harder to find. Done this way, the example above would look like
this:

while True:sweet = input('What sweet did you find? ')
if sweet != 'caramel':print('Ugh! Try again!')
else:print('Yay! Found one!')

break

The advantages of this version are:

• The condition is in the code just the once. So if we change it we change one thing.

72 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

• The initial value of the variable sweet is irrelevant.

• The entire logic of this code is not all together (encapsulated is the word).

The main downside is that we have to burrow into the code inside the loop to find out
how the loop will terminate.

Note: Anything that is always True can be used in loops like this. We have seen that
Boolean True is really just 1 in disguise, so some programmers save a bit of typing by
writing while 1. Something like while 1 == 1 is not unknown!

Unless you have been told not to, for some very good reason, this is the way to write
while loops in Python.

7.5 Pulling It Together

Let’s finish this section by using the new ideas here to create a complete program. This
example is not the most interesting, but it will use all the ideas from this chapter:

Times Tables

Write a program that prints a “times table”. The program should prompt the user to
enter an integer between 0 and 12 (inclusive) and should display the “times table” for
that value, from “0 times” to “12 times”.

While small, this is going to be the most complex program we have written so far. It
is unlikely that we would be able to sit down and type the whole thing in without er-
rors, so the trick is to break it down. We’ll define a useful first version, and then add in
features60. Let’s go like this:

1. Write a program to print a single table, the “7 Times Table”, say.

2. Change it so the user enters the number, without worrying about invalid entries.

3. Reject numbers outside the range 0 to 12 inclusive.

4. Allow the user to enter again if their number is out of range.

5. Fix the possibility that the user will not enter an integer.

Hold on! There is a lot in that list! Where did it come from? In many ways, that list is the
hard part of programming. The hard part is taking a complex problem and breaking it
down into smaller problems. If you do this, and repeat as needed, eventually you get to
problems that are so small they can be solved. And gluging all the solutions together
should solve the bigger problem!

Anyway, let’s start with the first stage. This is a determinate loop, because we know
there will always be 13 lines. The maths is not difficult, and a bit of fiddling will get the
layout looking reasonable. A first version:

60 In practice we would also save working versions of the program we we went. So that if we got into a
mess adding a new feature we could always retreat to a known working state.

7.5. Pulling It Together 73

Yet Another Python Book, Release 0.5beta

Listing 11: 7times.py
#!/usr/bin/env python3
if __name__ == '__main__':

for table_line in range(13):print(table_line, 'x 7 =', table_line * 7)
We should test this program, even though it is simple, just to be sure it works. Then
we take a look to see if it’s a good start. Remembering that we should never repeat
anything, we might spot that the 7 is in there twice; it makes sense to fix this, as for
one thing it will make the next version easier. So, for the moment, let’s turn that 7 into
a constant, like so:

Listing 12: 7times.py
#!/usr/bin/env python3
if __name__ == '__main__':

TABLE = 7
for table_line in range(13):print(table_line, 'x', TABLE, '=', table_line * TABLE)

Now, to print a different table all that needs to be changed if the value of that one con-
stant. Again, we would test.

Once satisfied, we need to change it so that the user enters the number, but we do not
care at this point about validating the input. This is now easy, because all we have to do
is change the way the constant gets its value (and at the same time change its name so
that it is a variable).

Tip: No need to change the name of the constant in three places. Your IDE should have
a feature to do this for you. Look for somehing called Refactor or similar.

The required change is just to the one line. This is the whole point of splitting the task
like this! The new version:

Listing 13: any_times.py
#!/usr/bin/env python3
if __name__ == '__main__':

table = int(input('Enter the table you require (0-12): '))
for table_line in range(13):print(table_line, 'x', table, '=', table_line * table)

74 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

See that we give the user a hint of the allowed values, but we are not yet checking them.
Also, there is a space between the end of the prompt and where the user will type. There
is no harm in keeping our simple dialogue neat.

Next we want to check that the number entered is between 0 and 12. For the moment,
we will just display the error, and not worry about anything else. This is obviously a
conditional statement after the input line. The condition could be written two ways
(either to define what is accepted, or what is not accepted), but the most obvious seems
to be to say what values are allowed, like so61:

Listing 14: any_times_2.py
#!/usr/bin/env python3
if __name__ == '__main__':

table = int(input('Enter the table you require (0-12): '))
if 0 <= table <= 12:

for table_line in range(13):print(table_line, 'x', table, '=', table_line * table)
else:print('Value out of range!')

So now the user knows of their error, and could just run the program again. Or we could
offer them a chance to make good their error. This seems a better user experience, so
we’ll do that.

This is another loop. It’s indeterminate, but will happen at least once. Instead of wor-
rying about what the loop condition should be (and worrying that it would be the same
as the condition in the conditional!) we’ll be Pythonic. We’ll put the whole program in
an infinite loop, and jump out of the loop after successfully printing the table. There’s
not much to change; the only tricky bit is getting the indentation right:

Listing 15: any_times_3.py
#!/usr/bin/env python3
if __name__ == '__main__':

while True:table = int(input('Enter the table you require (0-12): '))
if 0 <= table <= 12:

for table_line in range(13):print(table_line, 'x', table, '=', table_line * table)
break

else:print('Value out of range!')
Important: If you needed another argument for being Pythonic when using these

61 We saw a shorthand for testing if a value is between two others, so we’ll use that here.

7.5. Pulling It Together 75

Yet Another Python Book, Release 0.5beta

loops, here it is!

So now we break out of the loop only if we printed a table. Otherwise, we ask for the
input again. Take a close look at the indentation. For example, the break is indented
so as to be outside the for so that the whole table is printed. If you’re unsure, move it
across to line up with the print and see what changes.

Finally, we want to make sure that the user really does enter an integer. We are in
Pythonic mood here, so we will not examine the value that’s entered (LBYL - Look Be-
fore You Leap), we will just pick up the pieces if there is an error (EAFP - Easier to Ask
Forgiveness than Permission). Long ago, we saw that there would be an exception gen-
erated, and it would be a ValueError, so we need to try that.

Listing 16: any_times_4.py
#!/usr/bin/env python3
if __name__ == '__main__':

while True:
try:table = int(input('Enter the table you require (0-12): '))

if 0 <= table <= 12:
for table_line in range(13):print(table_line, 'x', table, '=', table_line *

→˓table)
break

else:print('Value out of range!')
except ValueError:print('Please enter an integer!')

See how working like this means that we hardly touch the parts of the program we know
work. That’s the trick of the thing!

We now have a working, we hope, program. It contains examples of everything we have
used so far. Study it!

7.6 Takeaways

There has been a lot in this chapter, but we have at least now completed a working pro-
gram that does something useful. Here are the main ideas:

1. Boolean conditions allow us to control the order in which statements are executed,
and/or which statements are executed. This is called the flow of control.

2. Conditional statements are introduced with the keyword if and allow for differ-
ent statements to be executed. More possibilities can be covered using the optionalelif and else keywords.

76 Chapter 7. Staying in Control

Yet Another Python Book, Release 0.5beta

3. Determinate loops are written with the for keyword. The range function is a
handy way to control the number of times loops execute.

4. Indeterminate loops use the while keyword. They can directly use a condition or,
pythonically, be used as infinite loops in conjunction with the break instruction.

5. Indentation shows which statements are inside which loops and conditions.

6. There can be, and often are, loops within loops, and conditions inside conditions.
And loops inside conditions, and so on.

7. The trick of programming is to split the big problem into smaller problems. And
to then repeat, until the problems are small enougn to solve.

Our programs are now going to get complex, at least in the sense that they will be longer.
So next we will look at ways to keep the amount of code we are working on to a man-
ageable amount. Say 24 lines or so. Onward!

7.6. Takeaways 77

Yet Another Python Book, Release 0.5beta

78 Chapter 7. Staying in Control

CHAPTER

EIGHT

THEWHEEL. DO NOT REINVENT

Python is quite a small language. We have already looked at most of the more impor-
tant features, and will spend the next few chapters filling in some more details. For a
moment we will pause, though, and look at some of the ways in which we can use useful
modules of program code that come with Python. And in passing we’ll mention some
of the many other ways in which Python can be extended.

In many ways, modern programming is case a case of bringing together “stuff” from
many sources into a whole that solves some new problem. A modern app might use
a database, a framework for web applications, a toolkit for developing front-end web-
sites, and more. Even with just a programming language there are many extensions
and handy collections of code that can make our lives easier.

And using them is not cheating! Using them is just what professional programmers do.
Not using them is just making more work for yourself.

Moreover, Python exists in the open source world, so many of these extensions are de-
veloped, tested, and used by huge communities across the world. Any bugs are quickly
found and dealt with, and packages are extended and new versions released regularly.
This means that you can be confident that the extensions you are using are tried and
tested, and maybe you will be able to contribute to the community yourself one day.

Let’s illustrate this with a simple programming task:

Check a String

Validate a user’s input to ensure that the first character of a string they enter is an
uppercase letter, and the last is a period (full stop).

We could start thinking about this problem along these lines:

Hmm. We can get the first character of a string at index ``0``, and wecan somehow write an ``if`` statement. Maybe we can see if it'sbetween ``A`` and ``Z`` or something. The last character will be index
→˓``-1``,and testing that will be easy.

This is the wrong way to think! Looking for uppercase letters, and checking how a string
ends sound like they might be common things to need to do. They are. And so there is a
built-in way to quickly and easily do either. This is always the way to think - does what
I am trying to do seem like something that has been done many, many times before?

79

Yet Another Python Book, Release 0.5beta

For the record, there is a built-in function in Python called isupper that will tell us
if a character is an upper case letter. There is another for testing how a string ends,
imaginatively named endswith. So to validate the string as required it’s just a case if
gluing these two together:

Listing 1: string_check.py
#!/usr/bin/env python3
if __name__ == '__main__':

stringy = input('Enter string to test: ')
if stringy[0].isupper() and stringy.endswith('.'):print('String passes the test.')
else:print('String fails the test.')

Tip: Another advantage of using built-in functions like this is that the resulting code
when “read aloud” can often do a very good job of saying what the program is doing.

Of course, we do not know how isupper and endswith work. Nor do we want to know,
or need to know. We just know what they do, and how we use them. We trust that they
have been tested thousands of times, and are trusted.

Tip: As you enter a program, your IDE may well pop-up helpful hints about what you
might want to type next. Look at these, and you will see possible functions that might
come in handy later on.

These handy building blocks are available to us in two ways. Some, the most commonly
used, are found in the Python Standard Library. Others, needed less often, are available
for download as packages; these are found in the Python Package Index, which is some-
times affectionately known as The Cheese Shop after a famous Monty Python sketch.

8.1 The Standard Library

Many of the things we have mentioned so far - the built-in data types, for example - are
part of Python’s Standard Library. The library provides, in its own words “standard-
ized solutions for many problems that occur in everyday programming”. So this is the
place to look for something that solves a problem that crops up in many different pro-
gramming scenarios. It is safe to assume that the Standard Libray is available wherever
Python is installed.

The contents of the Standard Library are listed in the docs at https://docs.python.org/
3/library/index.html . You can tweak the drop-down at the top left of this page to
change to the exact version of Python you have. Reading down the list we see:

More Data Types
There is a richer collection of data types, mostly to handle collections of primitive

80 Chapter 8. The Wheel. Do Not Reinvent

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Yet Another Python Book, Release 0.5beta

data items. We have those in the plan for the next chapter.

More Exceptions
We have used a few of the more common exceptions, but there are more, and they
cover every likely mishap. (You can actually add your own, but that’s beyond our
scope at the moment).

Collections of Code
And then there are many collections (correctly called modules of useful code for
common programming situations. These are the places to look for solutions to
common problems.

The last here is worth pausing over. Take a look down the list and you see a whole bunch
of potentially useful stuff for common applications. These are available, effectively
built-in to Python, so there really is no good reason not to make use of them. Some
of them are quite esoteric, and are probably used rarely. Some are useful much more
often. Even experienced programmers should glance down the list now and again to
remind themselves of what’s available.

Here’s an example. Suppose we have a file processing program, and we need to write
some temporary data to a separate file. We need to generate a name for that file. With-
out thinking we might start writing some code to string a few characters together to
form the name. Then we might stop and wonder what to do if it turned out somehow
that the file already existed . . . But, look, here is the tempfile module. It contains code
that will create a temporary file for us, and guarantee the name is unique. That is super-
neat.

Some of the more commonly used modules are (in the order they appears in the docs):

string
Handy functions for processing strings (in addition to those that are always avail-
able).

textwrap
Useful for consistently shortening lines of text, adding line breaks, and so on.

datetime
One of many modules for handling dates and times, getting the current time, do-
ing maths on dates, and more.

math
All the usual maths functions you might remember from A level, and that calcu-
lator.

decimal
Used for fixed-point numbers. Very useful when a value always has to have the
same number of decimal places, often for amounts of money.

fractions
For maths on, ah, fractions.

random
Functions to generate pseudo-random numbers, make random choices, and the
like. Useful in games and statistics.

statistics
What it says! Don’t code standard deviations, modes, and medians, they’re in here.

8.1. The Standard Library 81

Yet Another Python Book, Release 0.5beta

os.path
A handy interface to manipulating files on the system. See also shutil for a
higher level interface.

zipfile
For creating and opening Zip files. There are also modules for other common com-
pression and archive formats. This is ver useful if you don’t have WinZip or simi-
lar to hand.

csv
For opening and processing files in comma-separated value format. Files ex-
ported from Excel usually.

getpass
Reads a password (without it being displayed on the screen).

There are plenty more, but the later parts of the list get a bit specific. There are modules
that provide functions for various Internet protocols, different multimedia, basic GUIs,
testing, and many more.

So, if all this is available, how do we get at them? Let’s do a simple example.

8.1.1 A Module Example

Here’s a task:

Password

Write a program that reads a password from the user, twice, and confirms that the
two passwords entered are the same. For debugging, display the password entered,
along with the user’s login name.

Eek! Where to start with that? Read the password is easy with input, but we know
that the user’s typing will be displayed. And how to find out who is logged in to the
computer? All very tricky.

Obviously this is an example, and obviously the last module listed above, getpass is
going to be our friend here. To find out what it can do, we can reads the docs, Google
for an example (often a better call), or check the built-in help. To start using a module
it needs to be made available, via an import:

>>> import getpass

And then there are two ways to remind ourselves of what is available in the module.
The first just lists the names of the contents, and the second provides more details.

>>> dir(getpass)
>>> help(getpass)
Initially, you may find the built-in help, and the official docs, a bit difficult to follow.
That’s not a problem - a quick Google will surely lead you to an example of how to use
the module.

82 Chapter 8. The Wheel. Do Not Reinvent

Yet Another Python Book, Release 0.5beta

The official docs62 for the module tell us that there are two functions in this module.
One gets a password, without echoing on the screen, and the second gets us the current
user’s id. These will surely simplify writing this program.

First, to get the password. The docs for this function tell us much:

We see that:

• We use the function as getpass.getpass. This is the usual deal, where a function
is referenced with its name and the name of its module. It covers the chance that
two modules will contain functions with the same name.

• We provide a prompt. If we do not, then Password: will be used (with a space).

• On Unix-like systems, we can read from different streams. This can be ignored.

• The password will not be displayed. If it could be, then a GetPassWarning ex-
ception will occur. Since this exception is also defined in the module it will begetpass.GetPassWarning.

So to make our program we will need to:

#. Import the getpass module. # Prompt the user for a password. #. Prompt again to
re-enter (a different prompt here would be good). #. Compare the two, and display the
user’s id if they match. #. Display an error if they don’t match. #. Display an error if it
is not possible to enter the password without it displaying.

Phew! This looks a bit deep, but using the modules, it’s very neat. Here we are:

Listing 2: password.py
#!/usr/bin/env python3
import getpass

if __name__ == '__main__':
try:password = getpass.getpass()re_entry = getpass.getpass('Re-enter: ')

user = getpass.getuser()
if password == re_entry:print('User: ', user)

(continues on next page)

62 https://docs.python.org/3/library/getpass.html

8.1. The Standard Library 83

https://docs.python.org/3/library/getpass.html

Yet Another Python Book, Release 0.5beta

(continued from previous page)print('Password: ', password)
else:print('Passwords did not match.')

except getpass.GetPassWarning:print('Password will show on screen. Exiting!')
The import goes at the top of the program, before the start of the main part of the
code. This is another convention that it is important to follow. (If there are multipleimport statements, another common convention is to include them in alphabetical or-
der). Then the program just uses the module.

If you type this program into your IDE you will probably find that it is aware of the
module, and once it has been imported, the IDE will suggest the names of the functions.
That saves remembering them.

A final point is that this module we are using here is cross-platform. That is, it will work
on any operating system. The version you are looking at above was written on Linux,
but it would also work on Windows or Mac. Obviously Unix-like systems (Linux and
Mac) manage users and passwords in different ways to Windows, so this really is a big
thing. Using these modules there is no need to develop and maintain different versions
of a program for different operating systems.

Now, some more details about good practice in imports.

8.1.2 Importing

In the password example we wanted to make use of everything defined in the mod-
ule. There were only three things there, in fact. Other modules contain many more
functions (and other stuff), and typically a programmer doesn’t need all of them for a
particular task. So it is good form to only import the parts of a module that are needed.
Example:

Triangles

Write a program that takes the lengths of two sides of right-angled triangle, and dis-
plays the length of the third side.

For anyone who may have slept through maths, the requirement here is to square the
two numbers given, and display the square root.

Important: For simplicity, we will ignore the need to validate the numbers input here.
But we will return to this issue later on in the chapter. So don’t panic.

Obviously square roots are a common thing to require in many maths applications, and
a function can be found in the math module. As before, we do not know how it works,
nor do we care. We just need to know we can give it a number, and it will give us back
the answer we need. But there are many more things in the math module that we don’t
need, so we use a different import that states explicitly what we want.

84 Chapter 8. The Wheel. Do Not Reinvent

Yet Another Python Book, Release 0.5beta

Listing 3: pythagoras.py
#!/usr/bin/env python3
from math import sqrt
if __name__ == '__main__':

side_a = int(input('Enter the length of side A: '))side_b = int(input('Enter the length of side B: '))
side_c = sqrt((side_a * side_a) + (side_b * side_b))
print('Side C length:', side_c)

Importing in this way have a few advantages. First, it is obvious to someone reading this
program that it will make use of square roots, but nothing else “maths-y”. Second, it
saves invisibly including other things that might have names that could possibly clash
with variable names. And, third, there is small saving in that there is now no need to
add the name of the module before the name of the function.

Note: If you look closely at the line in that program that calculates the answer, you
might realise that the two sets of brackets are redundant because multiplication always
happens before addition. This is true, but leaving them in, as here, can make it more
obvious what the line is doing (squaring, then adding).

Never forget that programs are written to be read as well as run.

The same approach works with any module, and typically a program will have severalimport statements at the top. Let’s finish this section with a quick look at other Python
Packages.

8.2 The Python Package Index

The PyPi63 contains packages contributed by the Python community that have not made
it into the standard distribution. This is simply because it makes sense to keep what is
distributed small, and nothing to do with the quality of the submissions. Some of them
are very highly regarded, especially in fields like Data Science.

This book uses a bunch of packages out of PyPi. One example is Pygments64 which takes
the program source code, and produces coloured and highlighted exampled, as you’ve
seen many times by now.

Managing packages can be tricky, and is beyond out scope here. Packages often depend
on others, and this can lead to a web of interconnected dependencies. The standard
Python tool is pip, which is only a Google away should you want to try it out.

63 https://pypi.org
64 https://pypi.org/project/Pygments/

8.2. The Python Package Index 85

https://pypi.org
https://pypi.org/project/Pygments/

Yet Another Python Book, Release 0.5beta

If the standard library packages fail to meet a need, it is always worth searching over
PyPi. But you do need to evaluate what you find there. Things to look out for include
the number of “Stars”, the most recent updates, and the quality of the docs. You should
also check that the licence allows you to use the package for your intended purpose.

Among the PyPi packages that might be of interest are:

cryptography
Avoid having to code all those crypto algorithms with this.

python-dateutil
Adds to the existing datetime module with things like “next month”. Very useful
for calendar apps.

numpy
The standard package for scientific computation.

pandas
Powerful package for Data Science. (An example of a dependency is that Pandas
makes much use of, and therefore requires, NumPy.

beautifulsoup
Used for processing HTML pages to extract information - “screen scraping”.

But in general, if you need to do it, there is probably a package.

Packages on PyPi are all free, but are released under different licences. Sometimes the
original author would like a credit in anything that uses the package, for example. A
few exclude commercial use. These can be ignored, but it is good form to read and abide
by the licensing terms.

8.3 Takeaways

This chapter introduced the idea of a module of useful things. These things might be
functions (which are handy bits of code), or new exceptions. They can also include con-
stant values (the math module include a value for Pi, for example). The key points:

• It is important to look through the standard library and get an idea of what it there.

• PyPi contains many more packages, generally more specialised.

• The import statement includes a package. It does above the main part of the pro-
gram.

• It is best practice to import just that which is needed, using from ... import.

• Using library functions is helpful in writing programs that will run across differ-
ent operating systems.

• Licensing is not be ignored.

Using modules also allows us to split a large problem into smaller ones. We have seen
before how this is a crucial part of programming. Now we will go on to see how we can
develop our own “chunks” of programs, that we can reuse in different applications.
And we can organise them into modules, should we want.

86 Chapter 8. The Wheel. Do Not Reinvent

CHAPTER

NINE

KEEPING IT SIMPLE

Right at the start of the book we went through some basic ideas that, together, formed
what you need to know to start programming. If you look back, you will see that we have
now covered everything. Sure, there are some things that will make our programming
lives easier, and some features of Python that need a mention, but everything is very
much there.

We could use what we have learned to write complex programs. But there would be
a problem. These programs would quickly become very long, and the whole process
would be unsustainable. How would we cope if a small change in a program at line 11
caused an expected error at line 276? Or even line 102982? Complex systems are made
up of tens of thousands of lines of program code, often more. No-one can cope with
that complexity, so there needs to be some way to keep the day-to-day programming
tasks to something we can comprehend.

So, how many lines of program should a developer be working on? A reasonable rule
these days would be an absolute maximum of 50, but ideally far fewer. The guideline
used to be around 20, going back to the days when programming was done on a single-
screen dumb terminal.

The guideline really is that a programmer should be able to see all the code they are
working on, without scrolling up and down. In the olden days, this was about 20 lines.

87

Yet Another Python Book, Release 0.5beta

Now it’s a few more, but not by much.

The ideas in this section are all about keeping the amount of code a programmer works
on down to a reasonable limit. But first, some more to convince you that this really is a
good idea.

9.1 Code is Crafted

A common saying these days is that programming is a craft. This means many things,
but essentially it tells us that programming is all about producing good, elegant solu-
tions, that can be maintained and repaired, and that will work for a long time. It is not
enough for a program to work - it must work well. Or, if you prefer, it should be crafted.

Think about a craftsperson making a chair. A chair can be made by nailing a few pieces
of wood together, and screwing some legs on. But that would not produce a good chair.
A good chair has to fulfill its basic function, but is also needs to looks good. If it is well
made, and we will be happy to have it in our homes. We would expect a good chair to be
used for a long time, and we would expect to be able to repair it. We would expect it to
have been well made, or crafted.

Note: A while back, we used to say that software (programs) was engineered. And there
was a whole discipline called Software Engineering and people called Software Engi-
neers. It’s still a reasonable reference - good programs are built and structured well in
a similar way to complex machines - but it does seem to have fallen out of fashion.

Here are some ideas that help us think about what makes code good, or indeed crafted.

9.1.1 Code is Read

Code is read much more than it is written. This implies that good code should be read-
able, so that a programmer who is not the original author can quickly and easily see
what it does, and how it does it. This means that good code:

• Follows all the conventions adopted by those skilled in programming in that lan-
guage.

• Uses meaningful identifiers for all variables and constants.

• Does not rely on “neat tricks” or anything that obfuscates what is going on. Sim-
plicity is best.

• Breaks the problem down into small chunks that are easy to understand, and
which help isolate what might need to be changed.

Remember also that the programmer reading the code might still be the original au-
thor, a few years down the line!

88 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

9.1.2 Programming is a Team Effort

Anything other than the simplest programs is developed by teams of programmers. So
there needs to be a way to split the work. Specifically:

• If a program is held in one single monolithic file, it is impossible for several pro-
grammers to work on it together. So splitting the work up is vital.

• If a program is held in a single file, on a single server, it will be difficult for pro-
grammers working in different locations to collaborate.

• In a complex program, it is unlikely that any one programmer will know how every
single aspect works. So there needs to be a way to isolate parts of the program, for
attention from certain programmers.

Important: The issues here introduce the need for source code control. More on this at
the end of the book.

9.1.3 Multi-tasking is Difficult

Do you find it difficult to do seven things at once? Probably.

A single program that does seven things is difficult to write, for the same reason. It is
difficult to keep track of what should be doing what, and how that affects other things.

Splitting the program into smaller chunks can resolve this problem. The key idea is that
each “chunk” does exactly one thing. This means:

• That the code to be worked on will be shorter.

• Programmers can work on one chunk each, and later combine them.

• If the code has to do one thing, the chances are it will do that thing properly!

• And as the code does only one thing, it is relatively easy to test.

• If the code turns out to be incorrect, it is obvious where the fix needs to be.

This idea leads up to the most important concept here - DRY Code (and WET Code).

9.1.4 Don’t Repeat Yourself

Once you have some program code that solves a problem it makes sense to keep using
it wherever it can be used. This is, of course, the basic idea of abstraction, or taking a
solution to one problem and using it elsewhere. For example, if a program requires a
user to enter an integer value ten times, why write the code for that out ten times? Why
not write it the once, and then “call” it whenever needed?

This idea exists in many areas of Computing71. Do something once, or save a data item
once, and that becomes the definitive version. Once you have this version, use it wher-
ever it’s needed. The score is that you have recorded this one aspect of the system once,
and in one place. If you need to change it for some reason, just change it once.

71 Especially in databases, where the single most important idea is that a database should store every
fact about its world exactly once.

9.1. Code is Crafted 89

Yet Another Python Book, Release 0.5beta

This gives us the idea of DRY code72, which is good code.

Important: DRY is Don’t Repeat Yourself.

Do it once, and reuse it. DRY is good.

The alternative to DRY code is, obviously WET code.

Warning: WET is Write Everything Twice.

WET is Waste Everyone’s Time.

WET is We Enjoy Typing.

You should always aim for DRY Code. DRY Code is good for teams, good for keeping
things simple, and good for crafting code.

9.2 Code Reuse

Let’s jump in with an example. In the chapter on Modules, we had this program.

Listing 1: pythagoras.py
#!/usr/bin/env python3
from math import sqrt
if __name__ == '__main__':

side_a = int(input('Enter the length of side A: '))side_b = int(input('Enter the length of side B: '))
side_c = sqrt((side_a * side_a) + (side_b * side_b))
print('Side C length:', side_c)

And we noted that the two input lines really need some sort of validation to make sure
that the numbers entered are greater than zero. In fact, if the user’s experience is to
make sense, we really shouldn’t be asking for the second number until the first has
been entered correctly. It would also be best to allow the user to reenter their value if
an error is detected.

The code to validate one number is straightforward, not least because we have seen it
before! We simply stick the input inside the usual infinite loop, and break out once
the number is acceptable. It looks something like this:

while True:side = int(input('Enter a length: '))
(continues on next page)

72 See The Pragmatic Programmer by Dave Thomas and Andrew Hunt (Pragmatic Bookshelf, 2019).

90 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

(continued from previous page)

if side > 0:
break

else:print('Value out of range. Try again.')
To fix the program, we could just use this code twice. But we would be repeating our-
selves!. We need to way to put this “chunk” of program somewhere, so that we can use
it more than once. That turns out to be easy, but defining a function. To do this, we ba-
sically just give this code a name, and define it at the start of the program. And then we
can use it twice. The amended program looks like this:

Listing 2: pythagoras.py
#!/usr/bin/env python3
from math import sqrt
def read_side():

while True:side = int(input('Enter a length: '))
if side > 0:

break
else:print('Value out of range. Try again.')

return side
if __name__ == '__main__':

side_a = read_side()side_b = read_side()
side_c = sqrt((side_a * side_a) + (side_b * side_b))
print('Side C length:', side_c)

A lot going on here! Things to note:

• The function is defined below the import and above the main program.

• The function contains the usual code to read an integer, and has a name that ex-
plains what it does.

• The function is used (called, or “invoked”) (twice) from the the main program.

• When it has finished, the function has a return line that sends a value back the
main program.

9.2. Code Reuse 91

Yet Another Python Book, Release 0.5beta

Hint: By convention there are two blank lines above and below the function.

Important: There is actually very little new here. Using this function is exactly the
same as using any of the built-in functions we have used before. The only real differ-
ence is that we wrote the function, and we can see its code.

This is fine, and we are being DRY, but let’s make it a little better. At the moment, the
prompt displayed when the user enters a value is always the same. In the original pro-
gram it was different. We can change the way the function works by sending it some
values. These values, called parameters work like this:

Listing 3: pythagoras.py
#!/usr/bin/env python3
from math import sqrt
def read_side(prompt):

while True:side = int(input(prompt))
if side > 0:

break
else:print('Value out of range. Try again.')

return side
if __name__ == '__main__':

side_a = read_side('Enter Side A Length: ')side_b = read_side('Enter Side B Length: ')
side_c = sqrt((side_a * side_a) + (side_b * side_b))
print('Side C length:', side_c)

So now (run it and see!) the program will display two different prompts. The string
provided where the function is called passes into the function, and matches up with
the prompt variable that is used in the input line.

Finally, the killer! We have forgotten to check that the value entered is an integer. We
know that an exception will be thrown if the value is something else, and we know the
code to catch this. Now we are using a function, though, we need to enter this new code
just the once. And it will work in both places where it is used. DRY!

92 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

Listing 4: pythagoras.py
#!/usr/bin/env python3
from math import sqrt
def read_side(prompt):

while True:
try:side = int(input(prompt))

if side > 0:
break

else:print('Value out of range. Try again.')
except ValueError:print('Please enter an integer!')

return side
if __name__ == '__main__':

side_a = read_side('Enter Side A Length: ')side_b = read_side('Enter Side B Length: ')
side_c = sqrt((side_a * side_a) + (side_b * side_b))
print('Side C length:', side_c)

In Python, the technique we are using here is called a function. Every programming lan-
guage provides something similar although, as usual, the names may change. “Func-
tion” is common, but you may encounter procedure. In some languages the correct term
is method, although these are subtly different. For the moment “function” is what they
will be called.

Now, let’s step back and look a bit more at what is going on here.

9.3 Functions Explained

We have already seen how to use the functions that come as part of Python’s Standard
Library, and also those that can be imported from modules. What is new now is that we
are going to write our own functions.

Just like the built-in functions, our functions should be tried and tested units of code
that:

• Do exactly one thing (and therefore do it well).

• Are less than about, say, 25 lines of code.

9.3. Functions Explained 93

Yet Another Python Book, Release 0.5beta

• May take input values (“parameters”) that affect what they do (like the value
passed to math.sqrt.

• Usually65 return some value once they have completed.

Ideally, functions also have the potential to be used in other programs, but this may
not always be possible. Even then, using functions splits up the program into smaller
chunks that are easier to write and manage.

Functions are defined at the top of a program, below any import line and before the
main program starts. They are checked by Python, but the lines in them are not exe-
cuted. And by convention functions are separated by two blank lines.

Important: It may seem that functions are complicating the issue. After all, you can
write a program without them. But this is to miss the point. Functions make writing
the program easier, by breaking down the task. Sure, you can write a 100 line program
without functions, but try writing a 100,000,000 line system in one file!

Functions are called from the main program just like the built-in functions. Functions
can, and often do, call other functions.

Let’s look at some examples.

Example Function

Write a function to determine if a number is even.

The maths here is easy - we simply need to divide a number by 2, and see if the result
is an integer. Or, and probably easier, we could use the modulus operator (%) and see if
the result is zero. The function will need to receive the number to be tested as a param-
eter, and will return True if it is an even number, or False otherwise. And for a nameis_even sounds like a good call66.

Now to write the code for the function. The first line defines the name, and optionally,
the names of any parameters. It can be useful if the identifier of the parameter gives a
hint of the purpose of the value. So:

def is_even(number):
Then the rest of the function (called the body goes below. With a return to send the
result back to whatever is using the function. There can be more than one return -
whichever is reached first will terminate the function. So we can write:

def is_even(number):
if number % 2 == 0:

return True
(continues on next page)

65 “Usually”, because a function could just be a bunch of print statements. Even if a function just does
some action (like opening a network connection, say) it usually returns a value to indicate whether or not
it was successful.

66 Choosing function names carefully can often mean that lines of program can be read, and that read-
ing them explains what they do. This can eliminate the need for any other tedious way of explaining or
documenting the code.

94 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

(continued from previous page)

else:
return False

That’s it.

Of course, the function should be tested. This is often done just by writing a short pro-
gram that tests the function with a variety of input values. So we could quickly print
all the even numbers in a range:

Listing 5: even_tester.py
#!/usr/bin/env python3
def is_even(number):

if number % 2 == 0:
return True

else:
return False

if __name__ == '__main__':
for count in range(-10, 11):

if is_even(count):print(count)
And that should convince us that all is well with the function.

All is well, but the function doesn’t do any error checking. If the value passed to the
function is something other than an integer, there will be an error (an exception). This
is fine! The exception should go back to whatever called the function, and we should
expect that to deal with it.

Note: Functions can also generate their own exceptions. We’ll do an example shortly.
(In the jargon, we say that a function can throw an exception).

This function had just the one parameter, but in general functions can have any num-
ber. In this case, they need to be supplied in the expected order. To illustrate this, let’s
generalise our function for reading an integer. We’ll create a version that takes three
parameters:

1. The lowest allowed value.

2. The highest allowed value.

3. The message to display when the user is prompted to enter the value.

So we have there an integer, another integer, and a string. And there is an additional
rule that the first integer must be lower than the second. We have most of the code
itself from our previous example.

The first line of the function again defines it, and names the parameters:

9.3. Functions Explained 95

Yet Another Python Book, Release 0.5beta

def read_int_with_limits(lower_limit, upper_limit, prompt):
As usual, we try to use identifiers that show what is going on. In the main body of the
function we just need the usual loop, with a check that the value is between the lim-
its. We’ll take the chance to refactor the code slightly to remove the break; we can justreturn at this point67.

def read_int_with_limits(lower_limit, upper_limit, prompt):
while True:

try:number_entered = int(input(prompt))
if lower_limit <= number_entered <= upper_limit:

return number_entered
else:print('Value out of range!')

except ValueError:print('Please enter an integer!')
Note: Using the return and not a break is maybe a little controversial. There could
be an argument that the return is a bit hidden away when written like this. Some pro-
grammers would prefer the return to be the last statement in a function. Your call.
Either is fine.

This function can be called from anywhere else, with the call providing two integers,
and a string, in that order:

sides = read_int_with_limits(1, 100, 'Enter the number of sides: ')players = read_int_with_limits(1, 6, 'How many players? ')
Note: These calls show that there has to be a space on the end of the prompt if we are
going to get a neat dialogue. Seeing this, maybe we should go back to the function and
refactor it again to take the prompt without a space, but to add one in as it is displayed?

We have a problem if there is an error when the function is called, and the second num-
ber is lower than the first. By checking over the code we can deduce that the function
would fall into an infinite loop, because there is no value between the two. What to do?

There is absolutely no point printing out an error. It does not help to tell the program’s
user that the programmer has made an error. The correct thing to do is to raise an
exception to indicate to whatever is calling the function that something dreadful has
happened, and the function cannot do its work. The problem here is with the values
provided to the function, so we can simply use an existing exception -ValueError looks
a good one - and throw this back.

67 Either way to write this is fine. Some programmers prefer to always have the return as the last line.
Some go further and say there should only ever be one return. We take the view here that anything is
fine, as long as it is used consistently, and as long as the resulting code is clear.

96 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

def read_int_with_limits(lower_limit, upper_limit, prompt):
if lower_limit > upper_limit:

raise ValueError('Invalid limits')
while True:

try:number_entered = int(input(prompt))
if lower_limit <= number_entered <= upper_limit:

return number_entered
else:print('Value out of range!')

except ValueError:print('Please enter an integer!')
Here raise terminates the function and passes everything back to the caller. There
should be code there that handles the exception, and does something sensible. In gen-
eral, using an exception like this informs whatever is using the function that it was
unable to do its work, and was in a state where there was no point carrying on.

Right. Let’s finish this chapter with an example program that makes serious use of
functions.

9.4 A Simple Game

The Rules

A game is played on a 20x20 grid. There is some buried treasure at a random location.
The player starts at the bottom left, and can move north, south, east, or west. After
every move, they are told how far they are from the treasure.

The aim is simply for the player to move to the treasure in as few moves as possible.

There are many ways to implement this simple game. What follows is just one example.
It has been chosen so that it covers all the ideas from this chapter. (And it would also be
easier if we could use some of the ideas in the next, but we are where we are68.)

Let’s go.

68 There is only one place where this really becomes a pain. See if you can spot it.

9.4. A Simple Game 97

Yet Another Python Book, Release 0.5beta

9.4.1 Thinking It Through

Programming works like this. We have a problem, so now we start breaking the problem
down into smaller problems. We can immediately see some of the problems we will
have to crack:

• We will need to know the player’s current position.

• We will need to randomly generate a location for the treasure.

• We will need to work out the distance between the player and the treasure.

• The program will need to ask for the player’s move, and terminate once they are
at the treasure.

We can see that it will be possible to detect that the player is at the treasure because the
distance from it will be zero. Or there might be another way to do this.

Thinking more about the problem we might spot a couple of issues that will complicate
things:

1. A player should not be able to move off the 20x20 grid.

2. The treasure location should not be the same as the player’s starting position.

We are going to need to fix these, sure, but they are fine examples of the sort of issue we
might (and will) decide to ignore for the moment. We will get a basic version working,
and come back to these details later. Our basic version can just track the player around
the grid, not worrying about limits.

Important: If something in a program looks tricky, it is often a good idea to pretend it
isn’t there, and to sort it once everything else is working properly.

The grid for the game is 20x20, so we’ll follow the usual X and Y axis model. The X-axis
goes from 0 to 19 across, and the Y from 0 to 19 up. Remember that we should count
from 0! For this first version, we can now think:

• We need two integers for the player’s position, one for the X position (across) and
one for Y (up).

• The user needs to enter their move (a choice from N/S/E/W will do). That needs to
be validated.

• Once we have a valid move, we can change the player’s position.

• The whole thing can loop forever. Eventually it will end when the player reaches
the treasure.

We have now thought out the problem. Above we have a basic algorithm, which is the
way the program will work. We also have some promising ideas of how to represent the
real world as data.

We could write all this in one program, but it will be easier to write some functions.
This is especially so as the function to get and validate the move does seem rather like
the function we already have up above to validate the entry of an integer. Let’s start
there.

98 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

9.4.2 Tracking the Player

We need a function that allows the user to enter a single character, which must be one
of N, S, E, or W. If the user enters anything else, they should learn of their error, and be
asked to reenter. The in operator will come in handy here, and len will allow its length
to be checked. The input is a string, so there is no need for any exceptions. Here we go:

def get_direction():
while True:direction = input('Enter direction to move (N/S/E/W): ')

if len(direction) == 1 and direction in 'NSEW':
return direction

else:print('Error! Enter one of N/S/E/W.')
Important: Glance back up at the code for reading an integer. It is almost the same.
That’s abstraction.

Good stuff. Now we need to handle the player moving. If we had a function that ac-
cepted their current position and a direction to move, that would do it. The problem is
that we plan to store the player’s position as two integers (one for x, one for y), so the
function would need to return two things. But it can! Just separate the values with a
comma like this69:

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

Should the program check that the direction is valid? In the case of the current program
there is no need because we know that the get_direction function will only ever give
a valid direction. Worst case, if the direction in movewas invalid the position would just
be unchanged. So we leave it in this case.

Note: The program now has two functions, and it will include more. It is a good idea to
include them at the top of the program in roughly the order they are used. Remember
to separate them with two blank lines.

69 There is something going on behind the scenes here, but there is no need to worry about it. We can
just treat it as being able to return two values from our function.

9.4. A Simple Game 99

Yet Another Python Book, Release 0.5beta

Armed with the two functions, the main program is now easy, and short. Which was
the whole point!

Listing 6: treasure_hunt_1.py
#!/usr/bin/env python3
from random import randint
def get_direction():

while True:direction = input('Enter direction to move (N/S/E/W): ')
if len(direction) == 1 and direction in 'NSEW':

return direction
else:print('Error! Enter one of N/S/E/W.')

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

if __name__ == '__main__':
player_x = 0player_y = 0
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') next_direction = get_direction()player_x, player_y = move(player_x, player_y, next_direction)
The program is growing (about 40 lines now), but we are only ever working on small
sections of it.

100 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

9.4.3 Placing the Treasure

Now let’s add in the secret location of the treasure. This is a random location, so clearly
the randommodule will be our friend here. We have decided to ignore (for the moment)
the chance that the random location will be where the user starts, so all we need is two
random integers, on a scale from 0 to 19, inclusive. A check in the docs reveals a func-
tion called randint that does that.

Assuming we have the function available via an import here are two ways to write that
function.

def place_treasure():x_pos = randint(0, 19)y_pos = randint(0, 19)
return x_pos, y_pos

def place_treasure():
return randint(0, 19), randint(0, 19)

These are equivalent in that they do exactly the same. But the first version “spells out”
what it is doing, and is arguably a little clearer because of that. The choice here is largely
personal preference, but we’ll use the first, as clarity is important. We’ll also tweak the
main program to report where the treasure is; this will be useful for testing, but would
need to be removed if anyone wanted to play the game seriously!

Note: A common passtime among programmers is to try and write complex things in
one line. This is fine as an intellectual exercise, and can while away the long winter
evenings, but clarity in code in important. So sometimes it is better to use longer code,
just to make sure that everything is clear.

Here’s the program as it now is, with the new lines marked:

Listing 7: treasure_hunt_2.py
#!/usr/bin/env python3
from random import randint
def place_treasure():x_pos = randint(0, 19)y_pos = randint(0, 19)

return x_pos, y_pos
def get_direction():

while True:
(continues on next page)

9.4. A Simple Game 101

Yet Another Python Book, Release 0.5beta

(continued from previous page)direction = input('Enter direction to move (N/S/E/W): ')
if len(direction) == 1 and direction in 'NSEW':

return direction
else:print('Error! Enter one of N/S/E/W.')

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

if __name__ == '__main__':
player_x = 0player_y = 0
treasure_x, treasure_y = place_treasure()
print('Treasure is at (', treasure_x, ', ', treasure_y, ').', sep=

→˓'')
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') next_direction = get_direction()player_x, player_y = move(player_x, player_y, next_direction)
9.4.4 Tracking the Distance

It will add to the excitement if we add in the distance the player is from the treasure. Ob-
viously this will be another function, that will take the two positions as parameters and
return the distance between them. A Google will tell us that the required maths is a bit
of Pythagoras, suspiciously similar to an example we used earlier. This function is also
an example of something that is quite common in many applications, and therefore
something that we might have around from some other project. It is also something
that it undoubtedly in a package in PyPi, but as it’s a one-liner it will be quicker to just
code it. That said, we’ll keep the identifiers general, in case it does have use elsewhere.

Having said that the function is a one-liner, the brackets turn out to be fiddly, so for

102 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

ease and clarity it’s been spelled out here.

Note: This maths also involves square roots, so the math module is needed. Remember
that when there are several import statements it is good form to include them alpha-
betically.

Listing 8: treasure_hunt_3.py
#!/usr/bin/env python3
from math import sqrt
from random import randint
def place_treasure():x_pos = randint(0, 19)y_pos = randint(0, 19)

return x_pos, y_pos
def get_direction():

while True:direction = input('Enter direction to move (N/S/E/W): ')
if len(direction) == 1 and direction in 'NSEW':

return direction
else:print('Error! Enter one of N/S/E/W.')

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

def distance_from(x1, y1, x2, y2):
dx = x2 - x1dy = y2 - y1

(continues on next page)

9.4. A Simple Game 103

Yet Another Python Book, Release 0.5beta

(continued from previous page)

return sqrt((dx ** 2) + (dy ** 2))
if __name__ == '__main__':

player_x = 0player_y = 0
treasure_x, treasure_y = place_treasure()
print('Treasure is at (', treasure_x, ', ', treasure_y, ').', sep=

→˓'')
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') print('Distance to Treasure: ', distance_from(player_x,
→˓player_y, treasure_x, treasure_y))next_direction = get_direction()player_x, player_y = move(player_x, player_y, next_direction)

Now all that is really needed is to determine whether the user has “won”.

9.4.5 The Endgame

The player wins when they arrive at the treasure. Two ways exist to spot this:

1. The distance between the two will be zero.

2. The co-ordinates of the two match.

Either would work, but the first relies on floating-point maths. What would happen
if the distance was reported as 0.000001, for example?70 It is therefore better to just
compare the positions. If this is done in a function, as obviously it should be, it would
also be quick and easy to drop in a version using the other approach.

The new function just needs to take the two positions, and return a Boolean to indicate
whether or not they are the same. There is a common “recipe” here. Many functions
have a structure along the lines of if some condition is True, return True, otherwise re-
turn False. In this case, it is just as easy to return the condition. And it saves typing.
Compare the two:

if player_x == treasure_x and player_y == treasure_y:
return True

else:
return False

70 In practice, a program should never check that a floating-point value is exactly zero. It should check
that the value is less than, say, 0.0000001 and treat that as zero. For the same reason, never compare two
floating-point values for equality.

104 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

which is precisely the same as:

return player_x == treasure_x and player_y == treasure_y
This is a case where spelling things out doesn’t really add anything. The single line is
fine, and would be understood by anyone reading the program. (You might even find
that your IDE would highlight the first version above as an “error” and offer to fix it to
the second.)

The latest version of the program uses the second structure, but uses general identi-
fiers in case the function could be useful elsewhere. The function is used in the main
program, which exits once the treasure is found.

Listing 9: treasure_hunt_4.py
#!/usr/bin/env python3
from math import sqrt
from random import randint
def place_treasure():x_pos = randint(0, 19)y_pos = randint(0, 19)

return x_pos, y_pos
def get_direction():

while True:direction = input('Enter direction to move (N/S/E/W): ')
if len(direction) == 1 and direction in 'NSEW':

return direction
else:print('Error! Enter one of N/S/E/W.')

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

(continues on next page)

9.4. A Simple Game 105

Yet Another Python Book, Release 0.5beta

(continued from previous page)

def distance_from(x1, y1, x2, y2):
dx = x2 - x1dy = y2 - y1
return sqrt((dx ** 2) + (dy ** 2))

def same_position(x1, y1, x2, y2):
return x1 == x2 and y1 == y2

if __name__ == '__main__':
player_x = 0player_y = 0
treasure_x, treasure_y = place_treasure()
print('Treasure is at (', treasure_x, ', ', treasure_y, ').', sep=

→˓'')
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') print('Distance to Treasure: ', distance_from(player_x,
→˓player_y, treasure_x, treasure_y))

if same_position(player_x, player_y, treasure_x, treasure_y):print('Treasure Found!')
break

next_direction = get_direction()player_x, player_y = move(player_x, player_y, next_direction)
9.4.6 Final Tweaks

We noted two special problems right at the start, which were left to the end. Time to fix
them.

The easiest to fix is that the treasure should not be generated right next to the player. A
better fix would probably be to say that it has to be a reasonable distance away, so this
is a very quick fix indeed by just changing the lower limit of where it can be generated.
Our functions help us find the correct spot to make the change quickly, and there it
limited risk that we will break anything.

This is also a good moment to note that the dimensions of the game area are actually
defined in the program twice, so (assuming a square playing area) we are repeating
ourselves. Time to introduce some constants, which will make changing the rules eas-
ier in future. Constants are defined below the import and before the functions. We’ll

106 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

add two, one for the maximum playing area size, and one for the lowest position the
treasure can be at.

Listing 10: treasure_hunt_5.py
#!/usr/bin/env python3
from math import sqrt
from random import randint
BOARD_SIZE = 20TREASURE_MIN = 6
def place_treasure():x_pos = randint(TREASURE_MIN, BOARD_SIZE - 1)y_pos = randint(TREASURE_MIN, BOARD_SIZE - 1)

return x_pos, y_pos
def get_direction():

while True:direction = input('Enter direction to move (N/S/E/W): ')
if len(direction) == 1 and direction in 'NSEW':

return direction
else:print('Error! Enter one of N/S/E/W.')

def move(x, y, direction):
if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
return x, y

def distance_from(x1, y1, x2, y2):
dx = x2 - x1dy = y2 - y1
return sqrt((dx ** 2) + (dy ** 2))

(continues on next page)

9.4. A Simple Game 107

Yet Another Python Book, Release 0.5beta

(continued from previous page)

def same_position(x1, y1, x2, y2):
return x1 == x2 and y1 == y2

if __name__ == '__main__':
player_x = 0player_y = 0
treasure_x, treasure_y = place_treasure()
print('Treasure is at (', treasure_x, ', ', treasure_y, ').', sep=

→˓'')
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') print('Distance to Treasure: ', distance_from(player_x,
→˓player_y, treasure_x, treasure_y))

if same_position(player_x, player_y, treasure_x, treasure_y):print('Treasure Found!')
break

next_direction = get_direction()player_x, player_y = move(player_x, player_y, next_direction)
The second problem was that the user should not move off the playing area. The con-
stant just defined will be useful here, and it looks as if changes are needed in the move
function. The simplest fix is just to check the new position, and only to return it if it is
still on the playing area. Otherwise, an exception will be sent to show that the move it
not allowed.

Important: An exception is used because that can be processed in the program. There
is no point printing a message, because there might not be anyone to read it!

Finally, the main program deals with the exception. The complete program is below.

Listing 11: treasure_hunt.py
#!/usr/bin/env python3
from math import sqrt
from random import randint
BOARD_SIZE = 20TREASURE_MIN = 6

(continues on next page)

108 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

(continued from previous page)

def place_treasure():x_pos = randint(TREASURE_MIN, BOARD_SIZE - 1)y_pos = randint(TREASURE_MIN, BOARD_SIZE - 1)
return x_pos, y_pos

def get_direction():
while True:direction = input('Enter direction to move (N/S/E/W): ')

if len(direction) == 1 and direction in 'NSEW':
return direction

else:print('Error! Enter one of N/S/E/W.')
def move(x, y, direction):

if direction == 'N':y += 1
elif direction == 'S':y -= 1
elif direction == 'E':x += 1
elif direction == 'W':x -= 1
if 0 <= x <= BOARD_SIZE - 1 and 0 <= y <= BOARD_SIZE - 1:

return x, y
else:

raise ValueError('Attempt to move off the playing area!')
def distance_from(x1, y1, x2, y2):

dx = x2 - x1dy = y2 - y1
return sqrt((dx ** 2) + (dy ** 2))

def same_position(x1, y1, x2, y2):
return x1 == x2 and y1 == y2

if __name__ == '__main__':
(continues on next page)

9.4. A Simple Game 109

Yet Another Python Book, Release 0.5beta

(continued from previous page)

player_x = 0player_y = 0
treasure_x, treasure_y = place_treasure()
print('Treasure is at (', treasure_x, ', ', treasure_y, ').', sep=

→˓'')
while True:print('Player is at (', player_x, ', ', player_y, ').', sep='

→˓') print('Distance to Treasure: ', distance_from(player_x,
→˓player_y, treasure_x, treasure_y))

if same_position(player_x, player_y, treasure_x, treasure_y):print('Treasure Found!')
break

next_direction = get_direction()
try:player_x, player_y = move(player_x, player_y, next_

→˓direction)
except ValueError:print('Cannot move off the playing area!')

Looking very closely at the move function, it could be argued that it is now doing two
things. It is moving the player, and checking whether they are still in the allowed area.
Maybe there should be a separate function to do the second part? Decisions like this
crop up all the time - for the moment there is no serious reason to change things, but
refactoring might be needed in the future.

9.5 Using Functions

The final version of the simple game is about 80 lines long. But because it makes use
of functions, none of the chunks of code are difficult to manage. The main program
is the longest (just on 20 lines), but most of the functions are very short. It shows that
functions (and thinking in terms of functions) make the task of constructing a long
program much easier.

There is also the advantage that a couple of the functions in this program have been
adapted from functions that had already been created in different contexts. And some
of them could be useful if we were asked to write similar games. This leads neatly into
a mention of the possibility of building your own modules.

110 Chapter 9. Keeping it Simple

Yet Another Python Book, Release 0.5beta

9.5.1 Creating Modules

You can create modules of useful, related, functions just by putting them in the same
file. You can then import this file in the same way you would do those from the stan-
dard library. It is usually a good idea to include some sample code at the bottom of the
file that runs the functions, and acts as a basic test. Python will search for modules
according to a defined list of possible locations; one of these is the same folder as the
program with the import, which is therefore usually the easiest place to store the file!

Important: A common “gotcha” is to create your own module, and to give it a name
that’s the same as one from the standard library. Python sees your version first, so
you effectvely hide the standard one. A simple workaround is always to prefix module
names with my_ or the name of your project or business.

A common use of this is to have a module of helper functions that you find useful in your
daily programming tasks. A software business might have its own too. These would be
functions that have no specific use, but which just generally come in handy in a variety
of applications.

9.6 Takeaways

Using functions is an important part of writing code that is DRY. You should always
aim to represent everything - every value, every piece of logic - from a problem exactly
once. That way there is a good chance the representation is correct and, if not, a fix can
be applied in one place.

Programming is a process of breaking down an overall problem into smaller chunks.
These chunks eventually become easy to solve and work with, and correspond to func-
tions.

Specifically:

• Breaking down a problem into functions results in programs that are easier to
write, and easier to maintain.

• Programs need to be read and understood. Good use of functions, with clear nam-
ing, helps with this.

• Python functions are defined at the top of a program. They take parameters to
alter the way that they work, or the result they produce.

• Functions can either be specific to a particular problem, or can be more general.
If the latter, they can be written using more generic naming.

Finally, never be tempted to write a long, long program with the intention of “turning
it into functions” later. It is insanely difficult. The whole point of using functions is
to keep the amount of code currently holding your attention to a reasonable amount.
Don’t take on misguided approaches that will make your life so very miserable.

9.6. Takeaways 111

Yet Another Python Book, Release 0.5beta

112 Chapter 9. Keeping it Simple

CHAPTER

TEN

COLLECTING

As we’ve already noted more than once, we have actually covered all we need to know
in order to create programs. Modules and functions are really just a convenience that
help keep the job simple, and allow for useful chunks of program to be reused. They’re
all about making things easy, and saving unnecessary work. The new idea we’ll meet in
this chapter is almost the same - we don’t strictly need to be able to handle collections
of related data items, but being able to will make certain tasks much easier.

So this chapter introduces the idea of collections of data items. All programming lan-
guages will provide features for this and, as usual, the names differ but the basic ideas
are the same. In the earliest languages collections were called arrays, and that name is
still found in some modern languages. Other names you’ll see include lists, maps, sets,
and more.

Python provides a few collections as standard, and the collections module in the stan-
dard library contains a whole lot more. In general, a collection:

• Stores a number of related data items.

• May or may not require that those data items are of the same time.

• May store the items in a particular order, or may not consider order to be impor-
tant.

• May or may not allow duplicate items.

We’ll look at four collection types here76. These cover all the common use cases, and to-
gether form a complete toolbox to draw on. Strictly you only need one collection type to
do anything, but some do allow for more elegant and neater solutions. Anyway, below
we will describe:

Lists
The Swiss Army Knife of collections. You can do anything with a list. A list stores
data items, and maintains the order. Usually the items are all of the same time.

Tuple
Think of this as being like a row in a database table. This is a collection of data
that represents something. The data items do not have to be the same type. Order
is not important.

Set
Basically a list, with the handy extra property that items in it have to be unique.

76 This almost said three, but we’ll include Sets so as to be complete, and because they do have some nifty
uses now and again.

113

Yet Another Python Book, Release 0.5beta

This type also supports the usual operations (difference, intersection, etc) from
maths set theory.

Dictionary
A key-value collection. It is used by looking up a key, and finding the correspond-
ing value. It’s just like looking up a definition in a paper dictionary.

A collection is simply a bunch of related values that it is convenient to treat as a single
entity. They have a single name (identifier), so they can be passed into functions, and
returned from functions. So a list or tuple or set contains a collection of related data
items.

The various collections have slightly different properties. In a list, for example, order
is maintained - new values are added at the end, or among the existing values, in which
case the others “shuffle along”. Sets, in contrast, have no concept of order. Lists are said
to be mutable, which means they can be changed. Tuples are immutable, which implies
the opposite. Knowing a few of these details helps with picking the best collection for
a particular application.

We start with lists, as these are the most general. Remember, you can do anything with
a list.

Note: This chapter will not attempt to cover all the details of each of these collections.
That is what the docs are for! The Python docs include Tutorials73 along with the full
gory details74. Links to the relevant docs are included in each section below.

And, as always, Google will lead you to more tutorial material and examples.

10.1 Looking at Lists

A list is a collection of values, where the order is assumed to be important (although it
doesn’t have to be). Let’s use a list to explore the whole idea of a collection.

See also:

The official docs75.

A value in a list is often called an element. Usually, all the elements in a list are of the
same type, which is to say that lists are homogeneous77. It is assumed that the order of
the elements in a list has some importance, if only that the elements added most re-
cently are at the end. This in turn means that a list can usually be sorted into ascending
or descending order.

Hint: So lists are a good choice if you have data that needs to be sorted, or where you
need values like the highest or lowest.

73 https://docs.python.org/3/tutorial/datastructures.html
74 https://docs.python.org/3/library/stdtypes.html
75 https://docs.python.org/3/library/stdtypes.html#lists
77 Note this says usually. Lists can contain elements of different types, but this often breaks the point of

having a list, and the concept of “order” becomes difficult. A tuple is often a better call in this case.

114 Chapter 10. Collecting

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html#lists

Yet Another Python Book, Release 0.5beta

It follows that there must be a way to sort the elements, that they have a concept of
order, which brings us back to the idea that all the elements should be of the same type.

Enough description. Let’s do an example that shows the basics.

10.1.1 A List Example

Test Marks

A school pupil has taken four maths tests. Whether they pass or fail overall depends
on the average of the four marks from the five tests.

Write a program that takes the marks are finds the average.

There are four test marks here, all of which are going to be integers. So, without collec-
tions, we might think that something like this would work. (In a real program the values
would be entered, but here we’ll just assign the values here to keep the code short).

>>> mark_1 = 65
>>> mark_2 = 55
>>> mark_3 = 45
>>> mark_4 = 60
>>> average = (mark_1 + mark_2 + mark_3 + mark_4) / 4
This is fine. But what would happen if there were five tests? Or three? We would need
to add or remove variables, and remember to tweak the division to find the average.
These multiple changes mean that this not DRY code! Being able to handle any number
of marks would be DRY and would give a promising chance of creating some reusable
code. We can, of course, do just this with a list.

Important: Yes, you say, but the spec said four marks, so why write code that can han-
dle any more? The answer is that this is generalisation. It is not much extra effort, and
we will end up with some code that could be useful in other applications.

Suppose we wanted the average of 10 temperature readings. If we have general code
we could reuse it. That’s abstraction.

So, let’s rework this code to use a list. A list is created in the same way as any other
variable, by giving it a value. A list is denoted with square brackets, so to create an
empty list:

>>> marks = []
Or to create it with some values already in it:

>>> marks = [50, 40, 30,]
Note: That comma at the end might look odd, and indeed you’ll find that you could

10.1. Looking at Lists 115

Yet Another Python Book, Release 0.5beta

leave it out. Many programmers prefer this style, though, because it makes adding new
values easier. Your call78.

The important new idea here is that the list marks is a single variable, that happens to
contain multiple values. Being a list, order is maintained, so a new value can be added,
and will be at the end:

>>> marks.append(20)
>>> marks[50, 40, 30, 20]
We can start to see how this would be useful when we realise there are handy built-in
functions to calculate useful values from the values in the list. Like their number (the
length of the list) or their sum:

>>> len(marks)4
>>> sum(foo)140
Hint: There are other built-in functions too, like max and min to find the highest and
lowest values. Always remember to check for built-ins before writing some new code.

The key thing is to think “This must have been done before!”.

Using a list, the program to find the average of the four marks could use code some-
thing like this:

>>> marks = []
>>> marks.append(65)
>>> marks.append(55)
>>> marks.append(45)
>>> marks.append(60)
>>> average = sum(marks) / len(marks)
There’s not much gained so far, but what if there were a different number of marks?
Or how about a program that could handle any number of marks. That sounds a like a
loop. If we know in advance how many marks there would be, a for loop could work in
a program something like this:

Listing 1: marks.py
#!/usr/bin/env python3
NUMBER_OF_MARKS = 5
if __name__ == '__main__':

(continues on next page)

78 As we will see, this style is more important with tuples. So a good argument for doing this with lists is
that it’s consistent with other collections.

116 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

(continued from previous page)

marks = []
for count in range(NUMBER_OF_MARKS):next_mark = int(input('Enter the next mark: '))marks.append(next_mark)
average_mark = sum(marks) / len(marks)
print('Average Mark:', average_mark)

Note: For clarity, the code to verify that the mark entered is a number (and presumably
is also in some valid range) has been left out here.

Here the number of marks is defined as a constant, but it could just be entered by the
user. So to make this program work for any number of marks, all that would be needed
would be to change the value in NUMBER_OF_MARKS.

We can improve the readability of this program a little by pausing to think that aver-
ages are something that must be worked out a lot. A look in the docs (or a Google) would
reveal that there is no built-in way to find an average in the standard library, but that
there is a statistics module containing all sorts of promising stuff. So we can use
this to make things a little neater (and the program a little shorter).

And one final tweak will be to renamne to count variable in the for loop. There is a
convention (yes, another one) that if the variable is not of any use other than to control
the loop it is named _. So:

Listing 2: marks.py
#!/usr/bin/env python3
from statistics import mean
NUMBER_OF_MARKS = 5
if __name__ == '__main__':

marks = []
for _ in range(NUMBER_OF_MARKS):next_mark = int(input('Enter the next mark: '))marks.append(next_mark)
print('Average Mark:', mean(marks))

For completeness, and for the sake of another example, it’s a small change to this pro-
gram to get to a general-purpose version that could handle any number of marks. The
change is to the loop, which in a general solution is indeterminate, and we need to pro-

10.1. Looking at Lists 117

Yet Another Python Book, Release 0.5beta

vide the user with a way of indicating that have finished. We’ll have them enter -1
now79. The constant can obviously be removed, and we end up with a DRY solution.

Listing 3: marks.py
#!/usr/bin/env python3
from statistics import mean
if __name__ == '__main__':

marks = []
while True:next_mark = int(input('Enter the next mark (-1 to end): '))

if next_mark == -1:
break

else:marks.append(next_mark)
print('Average Mark:', mean(marks))

Another advantage of having all the marks data in a list is that we can do many other
useful things with it. The max built-in function would give us the highest value, for
example. And the statistics module is full of other possibly interesting values to
calculate.

10.1.2 Working with Lists

This is not the place for a full description of all the things you can do with lists. In-
stead we’ll talk about some of the most common uses, along with examples. Lists are
very flexible and powerful, and Python provides several useful ways of putting them to
work.

Keep in mind the most important features of a list in Python:

• It is heterogeneous (all the elements in it are of the same type).

• Its order is maintained, and is probably important.

As we have seen in the example, a list is denoted by square brackets, and can be created
with or without some initial values:

>>> speeds = []
>>> speeds = [1, 2, 3,]
It can be cleared either by just recreating it, or by emptying it:

>>> speeds.empty()
79 Probably not a good example of UX. Next chapter we’ll include a way to do this neatly.

118 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

Note: Many of the operations carried out on lists use a dot notation, where the identi-
fier of the list is joined to the name of the operation by a dot. The empty operation did
so above, and we have seen it before as in:

choices = ['spam', 'eggs',]choices.append('beans')
The append is using this dot notation. These operations behave rather like the functions
we have met before, but are correctly called methods because of this different syntax.
So that is the name used here.

Let’s start by looking at what the order of a list means.

List Order

The order of a list is maintained, whether or not it is important. This compares with a
string, which is a sequence of characters, where the order is usually important. New
elements are usually added at the end of list using the append method, like so:

>>> choice = ['beans',]
>>> choice.append('spam')
>>> choice['beans', 'spam']
>>> choice.append('spam')
>>> choice['beans', 'spam', 'spam']
Important: This example also neatly illustrates that there can be duplicate elements
in a list.

In rare cases80 new elements can be inserted at a specified position. Positions count
from zero (again, just like a string), and existing elements “shuffle along”:

>>> choice.insert(1, 'egg')
>>> choice['beans', 'egg', 'spam', 'spam']
The most common useful order is to have the elements sorted. The meaning of “sort”
depends on the type of the elements, but usually it does the obvious thing. Very con-
fusing things happen if a list containing several data types is sorted. To sort a list, we
just use the sort method:

>>> speeds = [12, 8, 23, 17]
>>> speeds.sort()
>>> speeds[8, 12, 17, 23]

80 So rare that this example might have been left out.

10.1. Looking at Lists 119

Yet Another Python Book, Release 0.5beta

And to reverse the sort, just sort and the reverse the list:

>>> speeds.sort()
>>> speeds.reverse()
>>> speeds[23, 17, 12, 8]
If you need to maintain a list in order, the procedure is simple. No need to find the
correct place, and insert the new element. Just add it on the end, and sort the result:

>>> speeds = [12, 8, 23, 17]
>>> speeds.append(10)
>>> speeds.sort()
>>> speeds[8, 10, 12, 17, 23]
That’s it!

List Slices

The examples above mentioned that lists behave rather like strings. This is intentional
- they are both what Python calls an iterable. So it follows that string operations and
slices work on lists. Individual elements can be found via their index, counting from 0
on the left or -1 on the right:

>>> speeds[8, 10, 12, 17, 23]
>>> speeds[0]8
>>> speeds[-1]23
>>> speeds[2]12
>>> speeds[-3]12
The two ways of counting mean that there are always two index values to get any ele-
ment. Using this index value, elements can be changed:

>>> speeds[8, 10, 12, 17, 23]
>>> speeds[0]8
>>> speeds[0] = 7
>>> speeds[7, 12, 17, 23]
Slices work too:

>>> speeds[8, 10, 12, 17, 23]
(continues on next page)

120 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

(continued from previous page)

>>> speeds[:-1][8, 10, 12, 17]
>>> speeds[2:][12, 17, 23]
>>> speeds[::2][8, 12, 23]
Slices can be assigned too, but that’s a bit obscure. Try it and see!

Finding Elements

So you have a list containing some values, and you need to know whether a given value
is there. That’s a very vague and abstract description, but it’s actually quite common.
Suppose you are reading car number plates as they pass, but only want to record each
one once. Or a user has entered a choice from a menu, and you want to check whether
it’s a valid choice. Both require that you check membership of your list or, if you prefer,
whether a given value is there.

There are two ways to do this, but we are not breaking Python’s “one way to do some-
thing” rule, because it depends on what exactly you want to do. Do you just need to
check if a value is in a list, or do you want to do that, and find out where it is?

In the first case (you just want to check if a value is in a list) we can use the fact that
lists and strings are both iterables, and use the in operator. It simply tells us whether a
value is, ah, in the list:

>>> speeds = [12, 8, 23, 17]
>>> 12 in speedsTrue
>>> 14 in speedsFalse
Alternatively, if we need to know where in the list the value can be found, the index
method is the one to reach for:

>>> speeds = [12, 8, 23, 17]
>>> speeds.index(12)0
>>> speeds.index(14)Traceback (most recent call last):File "<stdin>", line 1, in <module>ValueError: 14 is not in list
That exception if the value is not to be found means that index is often used after in
has been used to check whether value is there.

10.1. Looking at Lists 121

Yet Another Python Book, Release 0.5beta

Looping Lists

Often a program needs to do something with every element in a list. So it makes sense
to allow for loops to iterate across a list. In fact, the range function that we met when
first looking at for loops effectively generates a list behind the scenes81. So we could
have:

knights = ['Robin', 'Galahad', 'Bedevere']
for a_knight in knights:print('Bold Sir ', a_knight)
This is a very common operation when printing results, searching for a value, and so
on.

Copying Lists

Copying lists is straightforward, but a bit of a “gotcha”. To understand why, we need to
think a little about how lists are stored. We can think of it this way:82 a list is a pointer
to a memory location where the first value is stored. That value is stored along with a
pointer to the next, and so on. Eventually a value is reached that has no pointer, so this
must be the end of the list.

So if we have this:

speeds = [1, 2, 3, 4,]
there are four memory locations, sort of chained together. If we then have this:

speeds_copy = speeds
we actually have two versions of the same list. Both point to the same first element,
which points to the second. So changing one list will change the other too. See:

>>> speeds = [1, 2, 3, 4,]
>>> speeds_copy = speeds
>>> speeds_copy.append(5)
>>> speeds[1, 2, 3, 4, 5]
We added an element to the second list, but is also shows up in the first!

This is sometimes what you want, but admitedly not often. The trick is to use the copy
method, which actually does create a copy (a “shallow” copy to give its proper name).
This now works more intuitively:

>>> speeds = [1, 2, 3, 4,]
>>> speeds_copy = speeds.copy()
>>> speeds_copy.append(5)
>>> speeds

(continues on next page)

81 This is in fact pretty much what range did in older versions of Python. Now, for efficiency it does
something slightly different but we can still think of it as generating a list.

82 Think of it this way because this is exactly how it works.

122 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

(continued from previous page)[1, 2, 3, 4]
>>> speeds_copy[1, 2, 3, 4, 5]
Always use this method if you need a copy.

Note: As you will see in the docs, this is often written as creating a slice of the complete
list, like so:

>>> speeds_copy = speeds[:]
This is so commonly used, it’s fine.

10.1.3 Leaving Lists

Lists are a fine general-purpose collection. As we’ve noted, you only really needs lists.
Some older languages do only provide one collection type - usually called an array, but
most modern languages provide some more. Three of those that Python provides are
widely used, and we’ll go on to them now.

But keep in mind that you can do anything these types can do with a list (except that
for a Dicionary you need two lists). For that reason we’ll focus on the differences, and
the specific use cases where tuples, sets, and dictionaries come in handy.

10.2 Trying Tuples

At first sight, tuples seem very similar to lists, and you may wonder what they are for.
So let’s start with the two most important differences:

• Tuples are immutable, which means that once created, a tuple does not change.

• Tuples are usually heterogeneous, that is a tuple contains data of a range of differ-
ent data types.

This contrasts with a list which, as we have seen, is mutable and usually homogeneous.
.. hint:

If you have studied databases, you can think of a tuple as a row in a
→˓database table. And the database table could be represented by a
→˓list of tuples.

We have, in fact, used tuples before, without knowing it. If you have a function that re-
turns more than one value, it is in fact returning a tuple83. That code looked something
like this:

83 So, in effect, the function is returning one value, which happens to be a tuple.

10.2. Trying Tuples 123

Yet Another Python Book, Release 0.5beta

def find_string_and_number():
a_string = ...a_number = ...
return a_string, a_number

So we returned two values, separated with a comma. That is actually a tuple.

A tuple is represented just like that, a number of values separated by commas. So this
creates a tuple:

>>> details = 'Robin', 12, False
>>> type(details)<class 'tuple'>
>>> details('Robin', 12, False)
Notice that when the interpreter displays the value of a tuple it adds parentheses. So it
is usual to add these in anyway when a tuple is created (and this also allows tuples to
contain tuples). As you probably expect, the elements inside the tuple can be accessed
by an index number (just like lists) and slices work too:

>>> details[2]False
>>> details[-1]False
>>> details[:-1]('Robin', 12)
But, as they are immutable, it is not possible to assign values to the elements once a
tuple is created:

>>> details[2] = TrueTraceback (most recent call last):File "<stdin>", line 1, in <module>TypeError: 'tuple' object does not support item assignment
Some final details. To create an empty tuple use empty round parentheses:

>>> empty_tuple = ()
To create a tuple with a single element, you must add a trailing comma, like this84. But
the brackets are optional:

>>> new_tuple = 'Robin',
And the same will add an element to the end of a tuple:

84 This is one reason why adding the trailing comma in lists is good form. Keeps it less confusing.

124 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

>>> details += ('Brave',)
>>> details('Robin', 12, False, 'Brave')
But if you find yourself adding to the end of a tuple that could well be the problem’s
way of telling you that you should be using a list!

So, really tuples are best thought of as a handy way to handle several related data items
as a single unit. Remember the two key ideas - tuples are immutable and usually het-
erogeneous.

10.3 Seeking Sets

Sets are probably the most obscure collection type, but they are worth mentioning be-
cause of one special property. The features of a set are:

• It is unordered.

• It can be heterogeneous.

• It does not permit duplicate elements.

• It supports all the usual operations associated with a mathematical set, such as
intersection and difference.

The most commonly useful properly is the uniqueness. A set is created using curly
parentheses:

>>> knights = {'Robin', 'Galahad', 'Bedevere',}
>>> type(knights)<class 'set'>
The trailing comma is optional, as with tuples and lists.

Membership testing is possible:

>>> 'Robin' in knightsTrue
>>> 'Arthur' in knightsFalse
Items can be added to a set using the add method, but this has no effect if the item is
already there.

>>> knights.add('Robin')
>>> knights{'Galahad', 'Robin', 'Bedevere'}
>>> knights.add('Bors')
>>> knights{'Galahad', 'Bors', 'Robin', 'Bedevere'}
Note: The code above also illustrates that order is not defined for a set.

10.3. Seeking Sets 125

Yet Another Python Book, Release 0.5beta

The set operations can be useful if, say, we have two collections and want to know what
items are in the one, but not the other, or are in both:

>>> knights = {'Robin', 'Galahad', 'Bedevere',}
>>> brave_knights = {'Galahad', 'Bors', 'Bedevere',}
>>> knights - brave_knights{'Robin'}
>>> knights & brave_knights{'Galahad', 'Bors', 'Bedevere'}
The two operations here are set difference (-) and intersection (&).

So this can be very useful if this sort of thing is common in your application.

Finally, a common example where sets can be very handy is where you have a list but
you want to filter out duplicate items. The simple way to do this is to convert the list to
a set, and then back again! Look:

>>> knights = ['Galahad', 'Bors', 'Robin', 'Robin', 'Bors', 'Lancelot
→˓', 'Bors',]
>>> knights = list(set(knights))
>>> knights['Galahad', 'Bors', 'Robin', 'Lancelot']
Neat.

10.4 Discovering Dictionaries

The final collection that’s worthy of a mention is a dictionary. A dictionary is a key-
value pair, sometimes called a map. As usual, most modern programming languages
provide something like a dictionary, and many provide multiple subtle variations.

Note: There are many more collections, including specific types of dictionary, avail-
able in the standard library. We are just limiting ourselves to the built-in collection
types here.

Assuming you have used a paper dictionary, you already have the idea of what a Python
dictionary will do. In a paper dictionary you take a word (that’s the key) and find the
definition (that’s the value). It’s important to realise straight away that this doesn’t
work the other way around - you don’t take a definition and look through the dictionary
until you find the right word85.

So when using a dictionary we have a key and some corresponding values. For example:

• In a phone book, contact names would be the key (a string), and the phone number
would be the value (also a string86).

• In a login system, user names would be the key (string), and the password would
be the value (an encrypted string).

85 You can obviously code this in Python, but is is the stuff of nightmares to do.
86 A string? Yes. Phone numbers usually have spaces in them and are very rarely used in arithmetic!

126 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

• In an exam system, a student id would be the key (a string), and their results would
be the value (a list of integers).

Specifically, a Python dictionary:

• Is a collection of key-value pairs.

• Has unique keys.

• Does not (reliably) maintain any concept of order. (The order will most likely be the
order in which items are added, but it would be a brave programmer who decided
to rely on this!)

Given this, a dictionary is clearly going to be useful where the data in a problem neatly
fits the key-value idea.

Note: The question of “order” in a dictionary is a tricky one. The dictionaries we are
discussing here do not have order, although you can write cunning code to sort them.
But if you have a problem that really needs a dictionary with order, you can reach for
one of the other available types and import them - OrderedDict for example.

Let’s see a dictionary in use. An empty one is created using curly parentheses:

>>> scores = {}
Important: Curly brackets like this were also used with sets, above. To create an empty
set, the code is:

>>> empty_set = set()
Presumably they ran out of brackets.

Then it is simply a case of adding values. We specify the key, and the corresponding
value:

>>> scores = {}
>>> type(scores)<class 'dict'>
>>> scores['robin'] = 23
>>> scores['bors'] = 76
>>> scores['galahad'] = 40
>>> scores{'robin': 23, 'bors': 76, 'galahad': 40}
And to extract values, just use the key:

>>> scores['robin']23
The same works to change a value. Obviously changing a key doesn’t really make sense,
and has to be done by deleting and inserting a new entry.

10.4. Discovering Dictionaries 127

Yet Another Python Book, Release 0.5beta

>>> scores['robin'] = 45
>>> scores['robin']45
>>> del (scores['bors'])
>>> scores['sir bors'] = 76
>>> scores{'robin': 45, 'galahad': 40, 'sir bors': 76}
Two methods are commonly used to work with dictionaries. They are keys and values,
which provide lists of what they say:

>>> scores.keys()dict_keys(['robin', 'galahad', 'sir bors'])
>>> scores.values()dict_values([45, 40, 76])
And also, items gives a list of tuples representing the dictionary:

>>> scores.items()dict_items([('robin', 45), ('galahad', 40), ('sir bors', 76)])
To finish with an example of using a dictionary, let’s consider the problem of finding
the key value in the above dictionary that has the highest value. Here’s a shorthand for
creating a dictionary:

>>> scores = dict(robin = 45, galahad = 40, bors = 76, bedevere = 90)
>>> scores{'robin': 45, 'galahad': 40, 'bors': 76, 'bedevere': 90}
How to find the key with the highest value? We need to use the handy methods that let
us get at the insides of the dictionary. We can find the highest value easily:

>>> high_score = max(scores.values())
>>> high_score90
We have no way to find a key from just the value, and anyway the value might corre-
spond to more than one key. So the trick is to use items and loop across the dictionary
elements. This looks a bit strange, but once you’ve seen it once . . .

>>> for name, score in scores.items():
... if score == high_score:
... print (name)bedevere
The tricky thing about using a dictionary can simply be realising that it is the right tool
for your problem!

128 Chapter 10. Collecting

Yet Another Python Book, Release 0.5beta

10.5 Takeaways

This chapter has introduced four of the most common collection data types. Using
these is fundamental towriting DRY programs that will work in a range of situations.
When picking a collection type it is worth remembering:

• You can do basically anything with lists. Even key-value pairs can be implemented
with lists.

• Some collections maintain order, and can be sorted, some do not.

• Some allow duplicate values, some do not.

• Some are well suited for heterogeneous data, others work better with homoge-
neous data.

• Some operations, like iterating over a sequence, or testing membership with in
are available for more than one collection. As usual, it is the ones where the oper-
ation makes sense!

Many programs involve structures built up of several collections - lists of lists, or dic-
tionaries where the value is a tuple. The trick to arriving at an efficient solution can
often be to design the right data structures. Applications handling huge amounts of
data often require consideration of the best structures to allow for efficient searching
too, but that is not likely to be your problem for a while!

As usual, this chapter introduced the basic ideas. Full details are in the docs, and in
many online tutorials.

10.5. Takeaways 129

Yet Another Python Book, Release 0.5beta

130 Chapter 10. Collecting

CHAPTER

ELEVEN

FUNWITH FILES

Many pages ago we noted that all programs to basically the same thing. They take some
data, they do some processing, and then they write out the changed data. But up to now
all our programs have processed data that we have had a user enter from a keyboard.
This is sometimes enough, but only works for very small amounts of data, or simple
answers to prompts. In general we need to be able to handle data that is read from files.

This will mean that programs can handle a lot more data, but so long as we make sure
we are writing DRY programs, the programs themselves will not get much longer or
more complex. Some other issues will emergem, though, such as:

• A program may try to access a file that does not exist.

• A program may try to access a file that does exist, but for which there are no per-
missions (if it is owned by a different user, or requires some admin privilege, say).

• A program may be able to find and open a file, which then turns out to be in an
unexpected format.

• A program may try to write a file to a location that requires permissions which are
not available. Or which would overwrite an ecisting file.

This list looks a bit daunting, but the simple thing to remember is that any of these
error cases will generate an exception. So the only real issue is identifying and trapping
these in the same ways as we have done previously. This means that the three new
programming ideas needed to work with files are:

1. How to find if a file exists.

2. How to read data from a file into some convenient data structure, like a string or
list.

3. How to write data back to a file.

Important: Programs should, as far as is possible, be platform-independent. They
should run on any operating system. OSs differ in how they name files, and in how
folders are added into file names - notably Windows uses \ to separate folders in a hi-
erarchy but Unix-like systems use /.

We will get round these issues here by just looking for files in the same folder (directory)
as the program. There are plenty of useful functions in modules like os and sys for
handling file names so as to make sure that code is portable.

131

Yet Another Python Book, Release 0.5beta

The actual processing of the data should use the same ideas as we have seen before. So
let’s work through the basics of working with a file.

11.1 Finding Files

This is a good opportunity to revise the two different approaches to checking for error
conditions. The issue we need to overcome is that we are going to create a program that
uses a file; we need to check whether that files exists, and is available for us to read. The
two approaches are:

• To examine the files available, generate a list somehow, and see if the file we need
is in that list. And then proceed if it looks to be there. This is Look Before You Leap
- LBYL.

• Process the file regardless, and deal with any errors that arise if the file cannot be
found. This is EAFP: Easier to Ask Forgiveness than Permission.

Remember that in Python, we prefer the second (EAFP), even though the first - LBYL -
might seem to be the obvious way to go about it!

In this simple example, we will create a program that checks whether a file exists and is
accessible in the current folder (that is, the same folder as contains the program). The
program on its own won’t be very useful, but it will illustrate some important points.

Following EAFP, the strategy will be simply to open the file we are interested in, and to
see whether or not any errors occur when we do! In this simple example we’ll have the
user enter the file name, and we won’t bother with any validation on that. As before,
we could look up what error will happen if the file cannot be opened, or we could just
try it and see. The command to open a file in a Python program is just:

>>> open('spam.txt')
Trying that with a file that we know does not exist will show what the exception we are
looking for will be.

>>> open('spam.txt')Traceback (most recent call last):File "<stdin>", line 1, in <module>FileNotFoundError: [Errno 2] No such file or directory: 'spam.txt'
To be safe we should probably check what happens if the file does exist. On Linux (or
Mac), the touch command creates an empty file, so:

$ touch eggs.txt$ python3Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linuxType "help", "copyright", "credits" or "license" for more information.>>> open('eggs.txt')<_io.TextIOWrapper name='eggs.txt' mode='r' encoding='UTF-8'>
The output is maybe a little mysterious for now, but it is definitely not an error.

So let’s craft a program. First, we assume that the file does exist (and that the program
will crash if we try to open a file that does not exist):

132 Chapter 11. Fun with Files

Yet Another Python Book, Release 0.5beta

Listing 1: file_exists.py
#!/usr/bin/env python3
if __name__ == '__main__':

file_name = input('Enter the name of the file we seek: ')open(file_name)print('The file exists!')
It is obviously much neater to trap that exception thrown if the file cannot be opened.
We know from the experiment above that it is a FileNotFoundError, so the code is
easy.

This simple example gives us the boilerplate code that will be needed every time we
come to access a file. Remember they key idea, though: we assume that the file exists,
and that all will be well, and pick up the pieces if this turns out not to be the case.

So, there are two, or arguably three things we need to be able to do with a file once we
have assured ourselves that it can be opened. The first is that our program will read
the contents. The second and third are very similar - the program might need to write
a new version of the file, or it might append to the existing content.

Important: In our spirit of keeping things simple, we are going to just deal with text
files here. You can think of this as meaning files of data that make sense if you display
them on the screen. Python can also handle binary files - such as MP3s or images - in
a similar way to that described below. But remember that if you have a program that
needs to open, say, music files, there is probably something in PyPi that will do a lot of
the hard work for you.

Many programs obviously read a file, do something with the data, and then write the
results. So we start with reading.

11.2 Reading Files

Reading from a file is easy. First, the file is opened (along with the checks above), and
then there are methods (functions) that can read the contents. The command to open
a file is, ah, open, as we have seen, and for reading we also specify the mode. So that
the file can be referenced, the result of the open command is saved in a variable, which
most programmers would call a file pointer or maybe file reference. So opening a file
called spam.txt to read from it looks like this:

>>> f = open('spam.txt', 'r')
Reading (denoted by r) is the default, so this can be left out, but it is good form to keep
it in. There are then three usual options (remember that we are limiting ourselves to
text files here). Assuming the file is opened as above, with a file pointer f:

f.read()
Will read the whole file into a string.

11.2. Reading Files 133

Yet Another Python Book, Release 0.5beta

f.readline()
Will read the next line of the file into a string.

f.readlines()
Will read the whole file into a list of strings.

Once the file contents are in these variables, they can be processed using all the Python
we have seen before.

Let’s do a simple example.

Counting Lines

Write a program that takes the name of a text file, and prints the number of lines in
the file.

This program is straightforward when we remember that we can read the file into a
list, which each element being one line, and that we can easily find the length of a list.
A first attempt, where we assume the file exists could be:

Listing 2: word_count.py
#!/usr/bin/env python3
if __name__ == '__main__':

file_name = input('Enter the name of the file: ')
f = open(file_name)lines = len(f.readlines())
print('Lines in the file:', lines)

Once we have finished with a file, it is good practice to explicitly close it. This is not
strictly needed (it will be closed when the program exits), but it is tidy, and it indicates
clearly that the program has finished with the file.

So:

Listing 3: word_count.py
#!/usr/bin/env python3
if __name__ == '__main__':

file_name = input('Enter the name of the file: ')
f = open(file_name)lines = len(f.readlines())
f.close()
print('Lines in the file:', lines)

134 Chapter 11. Fun with Files

Yet Another Python Book, Release 0.5beta

And the program can be completed by adding in the usual code to deal with a possibly
missing file.

Listing 4: word_count.py
#!/usr/bin/env python3
if __name__ == '__main__':

file_name = input('Enter the name of the file: ')
try:f = open(file_name)lines = len(f.readlines())

f.close()
print('Lines in the file:', lines)

except FileNotFoundError:print('Error: File cannot be found.')
That’s done. There is probably one more small detail to mention.

11.2.1 Newlines

If you look at the data that is read from a file, you will see that every string is termi-
nated with \n. This symbol represents the “new line” character at the end of each line.
Obviously we don’t see that character, but it is how the file marks the end of lines, and
therefore why there is a line break when we view the file in an IDE, or Notepad.

Note: As well as \n you may also see \t, which represents a TAB character. There are
others (they are called escape sequences, but these two are the most common).

So, suppose we want to count the number of characters in a file, as well as the lines. In
that case we probably wouldn’t count the end of line characters. Such a program is ac-
tually a very common “recipe”, where we do something with every line of file. Example
coming up!

11.2.2 Line-by-line

Processing every line in a file is easy when we remember that the readlines method
gives a list. We can just loop over that list with a good old for. Let’s use this technique
to extend our line-counting program to count characters.

All we need to do is set a running counter to zero, and then add the length of each line
in turn. To get the answer that most would consider correct, we also need to knock one
off each line’s length for the newline character87.

87 Alternatively, and quite cunningly, we could just take the complete length including the new line char-
acters, and then at the end, subtract the total number of lines.

11.2. Reading Files 135

Yet Another Python Book, Release 0.5beta

We also need to do a little refactor here so that the list containing the file contents is
stored in a variable. Deep breath . . .

Listing 5: word_count.py
#!/usr/bin/env python3
if __name__ == '__main__':

file_name = input('Enter the name of the file: ')
try:f = open(file_name)

lines = f.readlines()
f.close()
characters = 0
for line in lines:characters += len(line) - 1
print('Lines in the file: ', len(lines))print('Characters in the file:', characters)

except FileNotFoundError:print('Error: File cannot be found.')
This structure, where a file is processed line-by-line is very common, so this code is
worth studying.

Now we can read files, we can try writing!

11.3 Writing Files

It should be no surprise that writing to a file involves much the same code as reading
from a file. First, the file must be opened, then data can be written, and finally it should
be closed. Closing a file after it has been written is probably more important that after
reading because this should flush any data that the operating system might be holding
in buffers88.

Opening the file for writing is the same code as for reading, except the mode is differ-
ent. Two write to a file:

>>> f = open('spam.txt', 'w')
or to append to a file (that is, add data to the end):

88 Output to a file on disk is slow, so typically the system will hold (“buffer”) data in some handy memory
and then write it to disk when there are system resources available. Closing a file forces anything in a
buffer to be written.

136 Chapter 11. Fun with Files

Yet Another Python Book, Release 0.5beta

>>> f = open('spam.txt', 'a')
But let’s consider what could go wrong here.

11.3.1 Writing Exceptions

In the case of writing a FileNotFoundError will only happen if the file name includes
a folder, and that folder does not exist.

There is also the possibility of a PermissionError if the location does exist but the user
running the program does not have permission to write a file there.

Trying to write to a file that already exists is tricky, because sometimes this would be an
error, but usually it isn’t. Writing to a log file, for example, involves adding data to an
existing file. So Python will be quite happy to open a file for writing, if that file exists.

Tip: If this is an issue, the os module contains handy functions to determine if a file
exists.

Or, you could just use the code for opening a file to write a quick function to check.
Here’s a quick hack:

def file_exists(filename):
try:f = open(filename, 'r')f.close()

return True
except FileNotFoundError:

return False

Although, of course, opening a file to read it does not mean you can write to it. It just
means that it exists.

So, when opening a file for writing, we should catch the exceptions that can happen
(but these will probably only happen if the filename also includes folder names).

11.3.2 Writing Data

There is only one function to write to a file, and it is imaginatively named write. You
can almost think of it as the same as print, except that output is sent to a file.

There really isn’t much to it, but an example will help.

Shopping List

Write a program that prompts the user to enter items they plan to buy, and stores
this in a file called shopping.txt.

11.3. Writing Files 137

Yet Another Python Book, Release 0.5beta

We will extend this program a little in a moment, but first we will assume that it runs
just once, so the file does not initially exist. So all we need to do is prompt the user to
enter items, and give them some way to indicate that are done.

Listing 6: shopping.py
#!/usr/bin/env python3
if __name__ == '__main__':

shopping = open('shopping.txt', 'w')
while True:new_item = input('What to buy? (END to exit): ')

if new_item == 'END':
break

shopping.write(new_item + '\n')
shopping.close()

The write method does not add a newline character so see that we have to do that our-
selves. This is sort of the opposite to wanting to ignore the newline when reading a file.

If the file does not exist, it will be created. If it does exist, as things stand, any new data
will overwrite what was already there. This might be what is wanted, or might not.

The third mode for writing to files, append, takes care of the situation where we want
to keep the existing contents. This is useful for a log file or, here, a shopping list:

Listing 7: shopping.py
#!/usr/bin/env python3
if __name__ == '__main__':

shopping = open('shopping.txt', 'a')
while True:new_item = input('What to buy? (END to exit): ')

if new_item == 'END':
break

shopping.write(new_item + '\n')
shopping.close()

A tiny change! Now, any new items will be added to the end of the file. If you try to
append to a file that does not exist, the file will be created, just as with the w mode.

Finally, let’s finish the program by trapping the exceptions. The two likely ones werePermissionError and FileNotFoundError. Since the error in either case would be the

138 Chapter 11. Fun with Files

Yet Another Python Book, Release 0.5beta

same, this is a good chance to show how to catch two exceptions at once! Here is the
code:

Listing 8: shopping.py
#!/usr/bin/env python3
if __name__ == '__main__':

try:shopping = open('shopping.txt', 'a')
while True:new_item = input('What to buy? (END to exit): ')

if new_item == 'END':
break

shopping.write(new_item + '\n')
shopping.close()

except (FileNotFoundError, PermissionError,):print('Cannot open file to write!')
That comma at the end gives it away - it’s a tuple of the exceptions that could be gener-
ated.

Since there is space, we’ll do one last refactor here. This is nothing to do with files as
such, but it does crop up a lot when using them. The problem is that (except in very un-
likely conditions89) the only place an exception will happen here would be when open-
ing the file. And as we have it the code the handle that has got a long way from the place
the error will happen.

So, let’s trap the exception in a slightly different way. This is really just for neatness.

Listing 9: shopping.py
#!/usr/bin/env python3
if __name__ == '__main__':

try:shopping = open('shopping.txt', 'a')
except (FileNotFoundError, PermissionError,):print('Cannot open file to write!')

(continues on next page)

89 This is called a race condition. Basically, our program determines that it can write to a file. But before
it comes to do this, some other program on the system does something to the same file, so it can no longer
be written. Try running the shopping list program in two windows at the same time. What should happen?
What does?

11.3. Writing Files 139

Yet Another Python Book, Release 0.5beta

(continued from previous page)

else:
while True:new_item = input('What to buy? (END to exit): ')

if new_item == 'END':
break

shopping.write(new_item + '\n')
shopping.close()

The new idea here is that else. It can be thought of as meaning “carry on here if there
is no exception”. If there is an exception, the else is never executed.

Have a look at both examples, and see which you think gives the code that is easir to
follow. That’s the one to use!

11.4 Takeaways

Most programs use files. Once a file has been opened, there are methods for reading
and writing data, and which work depends on the mode in which the file was opened.

Things to remember:

• Opening a file involves specifying the name, and the mode.

• Exceptions will show whether a file opened for read exists, or whether a file
opened for write can be written to.

• Reading a file does not affect it. Writing a file can create it, or overwrite it.

• If the contents of a file are to be added to, the mode to use is append.

And while we were here, we showed a slightly different way to work with exceptions.

Files are often used as command line arguments. How to do that is in the next chapter,
along with a few other things that will make our lives easier.

140 Chapter 11. Fun with Files

CHAPTER

TWELVE

THOSE LITTLE DETAILS

As we know, one of Python’s design features is that should be one, and preferably only
one, way of doing something. Right at the start if this book we set out that we would
explain and, and preferably only one, way of doing something in Python. That has prob-
ably worked, until now.

Programming languages change and evolve, and Python is no exception. It’s been
around for many years now, and new ideas and feedback from the community lead to
changes in the language. This is one of the joys of working with open source languages
and projects - everyone can have an input into how somnething develops.

This section includes some features that have been added into Python over the years.
Along with these are a few details that we passed over so as to keep things simple. The
sections below are in no special order, and will probably be added to over time!

12.1 Ternary

There has been much made of the benefits of producing DRY code in this book. A useful
feature in this quest is to use Python’s ternary version of the if statement. As with
many things in this chapter, there is no need to use this, and therefore no need to know
about it, but using it can produce much neater, and “DRYer” code.

A conditional (if) statement chooses between any number of possibilities. A ternary
can be used when there are two. It is really just a shorthand, but it can look a little odd
at first. It can be read as something like “do this if something is true, otherwise do that”.
An example:

mark = 50result = 'Pass' if mark >= 40 else 'Fail'
That should be obvious from just reading it, which is one of the benefits of using this.
Compare with the functionally identical:

mark = 50
if mark >= 40:result = 'Pass'
else:result = 'Fail'
That really is all there is to it. A common use case is in a f-string - see below!

141

Yet Another Python Book, Release 0.5beta

12.2 F-Strings

It is more than likely that you have found it difficult (or at least fiddly) to generate neat
output from some of your programs. This has not been helped by the way that we have
always used the print statement, along with a collection of arguments, and optionally
the sep argument to add or remove spacing. There is, not surprisingly a much neater
way to do all this, and to provide neatly formatted strings.

Important: The “best” way to achieve this has changed in Python over the years, so the
usual Google and StackOverflow searches may well lead to different solutions. These
are fine, but also fiddly.

Currently, the best way for formatting strings is formatted strings, or f-strings. The full
reasons for their introduction were debated backn in 2016, and are documented in PEP
49890. The basic idea is to interpolate (that is, include) code inside strings. This is not as
tricky as it sounds. A simple example:

>>> name = 'Robin'
>>> print(f'Greetings, Sir {name}!)Greetings, Sir Robin!
So the idea is that whatever is inside the curly brackets is executed as Python code, and
the result is printed. Here the contents of the curly brackets is just the name of a vari-
able, so the value is printed.

There is nothing here that couldn’t be done with conditional statements, string con-
catenation (adding), and so on, but this is much neater.

Here is an example of the brackets containing code. Suppose we have a test mark, the
pass is 40, and we want to print the result. Traditionally we would write:

if mark >= 40:print('Your mark was', mark, '. You have passed!', sep='')
else:print('Your mark was', mark, '. You have failed', sep='')
This is OK, but is fiddly to get the spacing right. Compare with the f-string version, that
makes use of a ternary:

print(f'Your mark is {mark}. You have {"passed" if mark >= 40 else
→˓"failed"}!')

The code is now a one-liner. It is easy to read, and the message is not duplicated, making
it a DRY solution.

Hint: In code like this, remember that we need to use double-quotes inside single-
quotes, else it will not be obvious where the first string ends. (You could use single
inside double, it matters not, as long as you are consistent.)

90 https://peps.python.org/pep-0498/

142 Chapter 12. Those Little Details

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0498/

Yet Another Python Book, Release 0.5beta

It is the magic f before the string that is making this happen.

There is more. These f-strings also allow the output to be formatted. The full details
are in the docs91 (but you may be better off Googling for some examples). The sort of
formatting available includes padding a string with spaces (before, after, or to centre
it), displaying a floating-point value to a number of decimal places, and more.

Some examples of formatting a string for output, using *** to show what’s going on:

>>> name = 'Robin'
>>> print(f'***{name:<20}***')***Robin ***
>>> print(f'***{name:>20}***')*** Robin***
>>> print(f'***{name:^20}***')*** Robin ***
This is handy for a neat table of results.

And an example of controlling the number of decimal places in a result:

>>> eggs_ratio = 31/7
>>> 31/74.428571428571429
>>> print(f'{eggs_ratio:.2f}')4.43
Note that the value is rounded, not just truncated.

There are many more options, but these two are really the most common. Check the
docs for more!

Finally, a quick note on a common programming task:

Binary

Write a program that accepts an integer as input and displays the equivalent in bi-
nary.

Now, to do this, you might start thinking about loops, calculating powers of two, using
remainders and modulus, and so on. And you would come up with a program that was
maybe 20 lines long, and you would be very proud.

But here is that, with the conversion done in one line, courtesy of an f-string . . .

Listing 1: binary.py
#!/usr/bin/env python3
if __name__ == '__main__':decimal_number = int(input('Enter a number: '))print(f'In binary, {decimal_number} is {decimal_number:b}.')

91 https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

12.2. F-Strings 143

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

Yet Another Python Book, Release 0.5beta

Sorry.

12.3 Command-Line Arguments

Early on in this book, we introduced the command line. While many applications use
graphical interfaces these days, there are still plenty of times where we need to just type
a command into a terminal. For one thing, this is probably how many of the programs
that we write will be run. You can run the program from inside your IDE, but you can’t
assume that your use will have the same IDE, or even any Pyton tool at all. So we fall
back on the good old command-line.

Tip: You may well find on Windows that double-clicking a Python program will run it,
a terminal window will appear, and then vanish before you can see the results. Google
will lead you to ways to preserve the output, but firing up a terminal and running it
there really is the best way.

Running a program at the command line is a simple case of starting the Python inter-
preter with the name of the file containing the program (programs are just plain text
files, remember). So on a Linux or Mac system:

$ python3 my_prog.py
does the job.

Windows is, as usual, a little more complicated, as typing pythonhas a habit of opening
the Windows Store. The simplest fix is to use:

C:\> py my_prog.py
making sure you are running in the same folder as contains the program. Better fixes
are a Google away.

When running a program like this, it is often useful to have some input on the com-
mand line, along with the name of the program file. As an example, here is a simple
program that counts the lines in a file (and uses an f-string!):

Listing 2: wc.py
#!/usr/bin/env python3
if __name__ == '__main__':file_name = input('Enter the file name: ')

f = open(file_name, 'r')lines = len(f.readlines())
print(f'Line Count: {lines}.')

This is fine, and it would work, but wouldn’t it be neater if the user just typed the name
of the file they want to use as input after the program name? So instead of:

144 Chapter 12. Those Little Details

Yet Another Python Book, Release 0.5beta

$ python3 wc.pyEnter the file name: text_file.txt
the user could just:

$ python3 wc.py text_file.txt
This is obviously possible, and is a case where we have the program capture command
line arguments. It works like this:

1. Import the sys module.

2. Then you have a list called sys.argv which contains everything from the com-
mand line. The first element is the name of the program, and then the remainder
is anything that was typed after it.

So for this program is we import the sys module, and then run the program as so:

$ python3 wc.py text_file.txt
The list sys.argv will contain wc.py at index 0, and text_file.txt at index 1. With
this knowledge, we can change the program:

Listing 3: wc.py
#!/usr/bin/env python3
import sys

if __name__ == '__main__':file_name = sys.argv[1]
f = open(file_name, 'r')lines = len(f.readlines())
print(f'Line Count: {lines}.')

and it will work as expected.

Using the command line like this usually introduces the possibility of errors, often
when the user misses off a required argument, or when the argument is invalid. So
there is some common code that often gets added in. In this case, missing off the argu-
ment would give an IndexErrorwhen the program tries to access the argument. There
could also be a FileNotFoundError if, ah, the file cannot be found. So a complete ver-
sion of the program, with error-checking, would be:

Listing 4: wc.py
#!/usr/bin/env python3

(continues on next page)

12.3. Command-Line Arguments 145

Yet Another Python Book, Release 0.5beta

(continued from previous page)

import sys

if __name__ == '__main__':
try:file_name = sys.argv[1]

f = open(file_name, 'r')lines = len(f.readlines())
print(f'Line Count: {lines}.')

except IndexError:print(f'{sys.argv[0]}: Missing required argument.')
except FileNotFoundError:print(f'{sys.argv[0]}: Cannot open "{sys.argv[1]}"')

Remember thatsys.argv[0] contains the name of the program, so here we are making
sure that the user knows what is generating the error.

12.4 None

Any book on programming will at some point provide a list of the built-in primitive data
types available. As we know, the list varies between languages but usually includes:

• Whole numbers, called integers.

• Numbers with a fractional part, called floating-point numbers.

• Strings, with a single character string possibly being a special case.

Modern languages usually also include a Boolean type, while older languages might just
use integers for that. Some languages offer more specific types, for example integers
that cannot be negative, or integers that occupy a specific amount of memory.

Python keeps it simple, so way back, we said that these were the four types in Python:

• int, an integer.

• float, a number with a fractional part.

• str, a string, which can have any number of characters,

• bool, a Boolean.

This was not strictly true. There is a fifth type. It’s called None or more accurately None-Type93.

The need for this arises from a particular problem. Python determines a variable’s type
from the value it is given when it is created, but what happens if we want a variable

93 This is still not strictly true. None isn’t really a type, it’s an object, and there is only one of them. See
the docs if you really need to know!

146 Chapter 12. Those Little Details

Yet Another Python Book, Release 0.5beta

that has no initial value? Such a variable has no value, so no type, so it can be givenNoneType.

It can be assigned deliberately, like this:

>>> spam = None
>>> type(spam)<class 'NoneType'>
And we can test whether the variable currently has an interesting value:

>>> not spamTrue
So at the moment spam has no useful value. Let’s give it one:

>>> spam = 1
>>> not(spam)False
This all seems a bit abstract, so let’s have an example where this might be useful. Sup-
pose we have a function that finds a value in a list. It takes two parameters, the list and
a number to search for, and returns where the number is in the list. There is a built-in
function called index that will do most of the heavy lifting, so we get something like:

def find_number(list_of_numbers, number):
return list_of_numbers.index(number)

This is fine and we could use it like this to look for a number, say 12:

position = find_number(all_numbers, 12)
But what happens if the number cannot be found? The index function will throw an
exception. This could be handled in the program using the function, but it can be neater
to return None to say the value was not found. The function becomes:

def find_number(list_of_numbers, number):
try:

return list_of_numbers.index(number)
except ValueError:

return None

This is neater because this function now always returns a value, so there is no need to
worry about exceptions when using it. So the code using the function can simply be:

position = find_number(all_numbers, 12)
if position:print('Value Found')
else:print('Value not found')
This is a neatness, but it does often improve the readability of code.

12.4. None 147

Yet Another Python Book, Release 0.5beta

Note: Somewhat related to this is a common structure in Python where we need to
check if, say, a list is empty, or a string variable contains no characters. The Booleannot comes in handy:

>>> s = ''
>>> not sTrue
>>> l = []
>>> not lTrue
This comes in useful when we want a user to enter some values, while giving them a
way to indicate that they are finished. A while back we had a program where a user
entered some marks, and we calculated the average. It looked like this:

Listing 5: marks.py
#!/usr/bin/env python3
from statistics import mean
if __name__ == '__main__':

marks = []
while True:next_mark = int(input('Enter the next mark (-1 to end): '))

if next_mark == -1:
break

else:marks.append(next_mark)
print('Average Mark:', mean(marks))

And we noted at the time that having them enter -1 to show they were done was not
the greated piece of user experience ever. A couple of small changes will allow the user
to just press Enter to show they are done. We use the fact that this gives an empty
string, and that not applied to an empty string gives True. The only other change is
that we need to move the int conversion so that we can test the possibly-emty string.
The improved version is:

Listing 6: marks.py
#!/usr/bin/env python3
from statistics import mean
if __name__ == '__main__':

(continues on next page)

148 Chapter 12. Those Little Details

Yet Another Python Book, Release 0.5beta

(continued from previous page)

marks = []
while True:next_mark = input('Enter the next mark ("Enter" to end): ')

if not next_mark:
break

else:marks.append(int(next_mark))
print('Average Mark:', mean(marks))

Much better UX!

12.5 Passing

This might seem a little odd, but there is a statement in Python that does nothing. Ever.
Nothing, nada, zilch. It’s needed because of Python’s reliance on indentation to show
what statements are in which block. Look at this line of code:

if number_entered == 1:
The syntax of Python requires that there is a statement on the following line. If there
isn’t, that is an error, and the program will fail to run. In some other languages you
could just use an empty pair of brackets or some such to show that there’s nothing
there, but the indentation in Python means that this won’t work.

So there is a need for a statement that does nothing! This might be because there is
nothing to do aside from declaring something (see Custom Exceptions), oe because the
programmer needs a placeholder, or because explicitly saying nothing needs to be done
improves the readability of the code.

All of these are the job of the pass statement. So in the code above, we could have this,
which is valid Python:

if number_entered == 1:
pass

Another common use is when writing functions. Quite often you need to write the func-
tion header, and want to work on the code that uses it. You will write the function body
later. So you use pass as a placeholder:

def useful_function():
pass

This satisfies the syntax, and stops your IDE generating errors. The code will also run,
although obviously it will do nothing.

Finally, a less common use is when you explicitly want to say that nothing should hap-
pen. This is obviously irrelevant to Python, but could help someone reading the code.

12.5. Passing 149

Yet Another Python Book, Release 0.5beta

For example, suppose some code wanted to ignore every value in a certain range. We
could write this, reasoning that just to ignore the range would look odd:

if number_entered == 1:print('One')
elif number_entered == 6:print('Six')
else:

pass

The score here is that we are explicitly ignoring other values.

Hint: If you use your IDE to create template code for functions, you may well find that
it adds a pass statement in to make the code valid.

12.6 Custom Exceptions

Exceptions, and programming with them, are very important in Python. This is espe-
cially true if we adopt the preferred easier to ask forgiveness than permission (EAFP)
approach to dealing with errors. We have written programs that have caught and dealt
with exceptions, as well as programs that have generated their own.

Up to know we have been content to use the built-in exceptions. Usually it has been
possible to find one where the name meets the facts of the case of what is going wrong.
But these are by their very nature quite generic; ValueError tells us nothing except
that a value is wrong, for example. It is often useful to be able to create our own excep-
tions, and to use those. So if there is a problem with a password, we could generate aPasswordError, for example.

Hint: There is a full list of the standard exceptions, as well as plenty of details on how
to use them, in the Python Docs92.

Defining a new exception uses Classes, which is a feature of Python we have been using
all along, since everything is a class. Look:

>>> type(1)<class 'int'>
Integers are a class of objects. So when we define a new exception we are going to add
a new object to the class of exceptions. The code to do this is simple, and makes use thepass statement! To create an exception to indicate a password problem:

class PasswordError(Exception):
pass

That’s it! Assuming this is defined at the top of a program (or, better, in an imported
module) we could have some code that generated a meaningful error. Something like:

92 https://docs.python.org/3/library/exceptions.html#concrete-exceptions

150 Chapter 12. Those Little Details

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Yet Another Python Book, Release 0.5beta

if password != confirmation_password:
raise PasswordError('Password mismatch')

That’s all there is to it. Remember that the name of the exception provides a general
idea of where the problem is, and the message includes more details.

12.7 List Comprehensions

Lists are a very powerful collection data type. In fact, to be honest, lists are the only
collection type you really need to know. They tend to be used in similar ways in many
programs, and often appear in similarly structured code. Typically there is a for loop,
that does something to each item in a list, or adds values to a list depending on some
condition. As an example, suppose we have a list of marks, and we want to build another
list containing just the fails (less than 40, say). The code might be something along the
lines of:

fail_marks = []
for mark in all_marks:

if mark < 40:fail_marks.append(mark)
Or suppose we have a name like Arthur James Wensleydale, and want to extract the
capital letters. These would represent the initials, and could be useful. We would code:

initials = ''
for letter in full_name:

if letter.isupper():initials += letter
This looks quite different, but is the same structure. Both these code samples initialise
a variable, and then add to it as they examine each element of something else in turn.
There are no lists in the second example, but there is what Python calls an iterable, and
that means they are basically the same thing.

These are cases where list comprehensions come in useful. As with some of the other
topics in this chapter there is never a case where you must use these, but they can lead
to neater code.

Important: Remember that good code values clarity over neat tricks. List comprehen-
sions are close to being neat tricks, and can lead to temptation to try to create nifty
one-liners.

Always look at your code with an eye on readability and clarity!

A list comprehension takes one list, and produces another, based on some condition.
Rather than describe the syntax, here is an example that would create a list of all even
integers less than 20:

12.7. List Comprehensions 151

Yet Another Python Book, Release 0.5beta

>>> evens = [x for x in range(20) if x % 2 == 0]
>>> evens[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
We can read this as evens is a list including all values in range(20) where that value %
2 is 0 (so it is even).

Compare this with that same code written out “long hand”, and you’ll see the point:

evens = []
for x in range(20):

if x % 2 == 0:evens.append(x)
In fact, you can see the code for the comprehension in that sample.

That’s all there is to it. We can rewrite our first example using a comprehension, so this:

fail_marks = []
for mark in all_marks:

if mark < 40:fail_marks.append(mark)
becomes the substantially neater:

fail_marks= [mark for marks in all_marks if mark < 40]
But what of that string example, where we were looking through a name? The trick here
is to build a list of the initial letters, and then to convert that list back to a string. Seems
over complicated, but the code is rather neat. First build the list:

initials = [letter for letter in full_name if letter.isupper()]
And then we can use the join function, that takes a list and joins the elements together
with the given separator. Here the separator is nothing:

initials = ''.join([letter for letter in full_name if letter.
→˓isupper()])

Again, this is very neat.

Using list comprehensions like this is very common, and is seen as Pythonic. So al-
though it might look like a neat trick it is safe to assume that any experienced pro-
grammer will understand. Try them in your next project!

152 Chapter 12. Those Little Details

Yet Another Python Book, Release 0.5beta

12.8 Takeaways

More than any other chapter in this book, this one is probably not complete!

There is really only one takeaway here, and that is that a programmer never stops learn-
ing. It is doubtful that there is anyone, anywhere, who knows all of Python, and can
use it well. Modern programming languages are constantly developing and improving,
and any developer needs to set time aside to keep up to date. Languages that are driven
forward by a community of users, like Python, have a process where anyone can con-
tribute, and the end results are achieved by consensus.

Much the same applies to any language you may come to use in the future. Languages
like Java and PHP have communities and continue to develop too. Even languages with
stronger ties to particular companies, like C# as an example, develop, even if they are
guided in a somewhat different way.

So, take away that there is plenty more to learn. Look at code written by others, check
the many tutorials available online, and, if you want to, keep up to date with new de-
velopments in Python.

12.8. Takeaways 153

Yet Another Python Book, Release 0.5beta

154 Chapter 12. Those Little Details

CHAPTER

THIRTEEN

THE END OF THE BOOK

This is the end.

Well, it could also be a beginning. There remains a massive skills shortage in the IT,
especially in programming and development, so maybe for you it could be a beginning?

Remember that programming is a skill. And like all skills it is something that you de-
velop over time. The first step is to master the basics, and then get to a place where you
can learn more. Then you learn, improve, and learn some more. Every programmer,
even those who been around for decades, is still learning.

Programming languages develop, and the ways in which we program develop. As I type
this, the current version of Python is 3.11. One day there will be a Python 4. It will
probably look rather like Python 3, but it will surely have new features that will improve
the lives of Python programmers in the future.

Tools develop too. A modern IDE is there all the time, by your side, making suggestions
and spotting errors. Even something that we now take for granted, like colour high-
lighting of code is quite new. Newer tools will embrace AI techniques, and who knows
where that might lead?

This is one of those chapters here that mightn grow. But, at least at the start, let’s keep
it short with a few key ideas.

13.1 Programming, not Python

This book has been about Python. But it is really about programming. If you feel you
can now “get by” in Python you can probably say the same about PHP, Java, and a bunch
of other languages. You would need to do some study, but now you should know what
you are looking for. Remember that every language has its idioms and ways of doing
things - as when we have been Pythonic here - which are the things you have to learn.

When approaching a new language you should be looking to see what the structure
is for a while and for loop. You should find out how if statements work, and how the
language shows what is inside the loop. You should be checking the docs for a list of the
provided data types. You will never have to learn programming from scratch again.

Never be afraid of Googling, and remember that StackOverflow really is your friend.
Every developer uses both daily, and any that tells you otherwise is not telling the truth.
Remember that the reasons experienced programmers seem to fix things easily is that
they have made all the mistakes before, and they have seen the errors, and know the
fixes. Learn from them, and be like them.

155

Yet Another Python Book, Release 0.5beta

Possibly the most important thing to develop is your sense of there must be a way to do
this. Before writing some new code, you need to have a sense of what the language you
are using probably already provides. Or what you will be able to find in the equivalent
of PyPi. A good deal of modern programming is putting together something new from
stuff that already exists.

Python is currently one of the most popular languages out there. There is a lot of
Python, and it is not going to go away any time soon. But what we have done here was
programming.

13.2 Keep Up To Date

Closely related to the comments above, is the need for a developer to keep up to date
with programming, and with tech in general. New programming languages come and
go. As I type this, some languages - looking at you, Go94 and Kotlin95 - are rapidly gain-
ing traction and have a lot of fans. It will be interesting to see how they fare. Other
languages (we’ll miss you, Ruby96 seem to be fading away. Developers need to know
what is going on, if for no other reason than this is where the jobs will be in the future!

Other techs also impact on how programmers work. Programmers need a working
knowledge of Cloud, Containers, Virtualisation, Continuous Integration and Continu-
ous Deployment, DevOps, and all the other nice things currently trendy in the IT world.
They at least need to be able to nod sensibly when these are mentioned, even if they do
then need to go check WikiPedia.

Docker97, Kubernetes98, and even Jenkins99 are all things to know about.

13.3 Keep Sharp

Practice, practice, then practice some more.

Much programming practice comes on the job. Or you can get involved with Open
Source projects, and develop skills that way.

One popular way to develop skills is through practice on short (but often fiendish) exer-
cises called Code Kata. See, for example, the original CodeKate site100. These are a way
of “limbering up” before taking on a new task, or can be a way of getting some friendly
competition going! There are plenty of other options - CodeWars101 has built a whole
community and awards coloured (virtual) belts, and Coding Dojos102 exist both online
and in real life.

These all promote ways to learn and meet other developers. Improve your skills and
enhance your career.

94 https://go.dev
95 https://kotlinlang.org
96 https://www.ruby-lang.org/en/
97 https://www.docker.com
98 https://kubernetes.io
99 https://www.jenkins.io

100 http://codekata.com
101 https://www.codewars.com
102 https://codingdojo.org/dojo/

156 Chapter 13. The End of the Book

https://go.dev
https://kotlinlang.org
https://www.ruby-lang.org/en/
https://www.docker.com
https://kubernetes.io
https://www.jenkins.io
http://codekata.com
https://www.codewars.com
https://codingdojo.org/dojo/

Yet Another Python Book, Release 0.5beta

13.4 Important Reading

There are many books about programming. But most of them are books about program-
ming languages. There are far fewer books about programming itself.

Warning: What follows is an opinion.

The best book to read about programming is The Pragmatic Programmer by Dave
Thomas and Andy Hunt. It’s been around for 20 years, and is a classic. It covers ev-
erything from career advice through to how to set up an IDE. The first three or four
chapters of this book owe a lot to what’s written here.

Like of lot of tech books, it’s not cheap, so get it on the Birthday list.

We respectfully nod to this book.

And we should also nod to Clean Code by “Uncle” Bob Martin. Like the above, this book
emphasises that programming is a craft. And it shows how it matters so much that code
works well. It’s just the same idea as a chair made of rough wood is something you can
sit on, but a crafted piece of furniture is so much better.

13.5 AI and Programming

Finally, AI, and specifically Generative AI is going to change the whole programming
business. AI can now write most programs if given the spec, so where does that leave
programmers?

In a way we have been using AI to help us program for a long time. Without getting into
a definition of AI, many things that our IDEs do have an “intelligent” feel to them. Your
IDE “understands” your code, and sometimes makes suggestions about how to improve
it. Is that AI? Or is it just following some rules it’s been given?

AI will come to be used to do some of the “grunt work” of programming. That’s the stuff
that exists in every problem, but needs to be made specific. Tools to do this are already
being introduced in both PyCharm and VS Code, so there is no point in ignoring them.

13.4. Important Reading 157

Yet Another Python Book, Release 0.5beta

But, for the time being at least, programmers still have plenty of skills that AI does not.
They could be summarised as intuition and experience.

AI cannot talk to users. It has never met users, and does not understand how they feel
about the redesign of the interface in the system they use every day.

So, sure, AI will change the way programmer work, but it’s not replacing us. Yet.

13.6 Takeaways

There is simply one message from the end of the book.

You never stop learning programming. You have now started. Well done! But don’t
think you will ever, ever, finish.

So, farewell!

158 Chapter 13. The End of the Book

GLOSSARY

Artificial Intelligence
The theory and development of computer systems able to perform tasks that nor-
mally require human intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages.

And, to be honest, writing glossary entries.

Boolean
A data type that has one of two possible values, usually denoted as true and false,
but always analagous to “on” and “off”. In Python, the two values are represented
by the built-in constants True and False.

Camel Case
A naming convention where words are written together without spaces, and each
word starts with a capital letter. For example, camelCase. In Python, camel case is
used for class names. Camel case should not be used for variable names or func-
tion names.

Cheese Shop
A sketch from Monty Python’s Flying Circus that features a customer trying to
buy cheese from a cheese shop that has no cheese. The sketch is a running joke
about the absurdity of the situation. The cheese shop has since become a metaphor
for any situation where something is missing or unavailable. The Python Package
Index (PyPi) is sometimes referred to as the Cheese Shop.

Constant
A value that does not change. In Python, constants are usually defined before the
main program and are written in all capital letters with underscores separating
words. For example, MAX_SIZE = 100.

Compiled Language
A programming language that requires its source code is converted into an exe-
cutable form, using a compiler, before it can be run. For example, C.

DRY
Stands for Don’t Repeat Yourself. A software development principle that suggests
you should not repeat the same code over and over. If you find yourself copying
and pasting code, you should probably refactor it into a function or class. See also
WET.

Duck Debugging
A method of debugging code by explaining it to a rubber duck. The name comes
from the book The Pragmatic Programmer by Andrew Hunt and Dave Thomas. The
idea is that explaining the code, line by line, to the duck will help you find bugs.
Other forms of rubber wildlife are also acceptable.

EAFP
Stands for Easier to Ask Forgiveness than Permission. A programming approach
that suggests you should just try to do something and catch an exception if it fails.
For example, you should try to open a file and catch the resulting exception if the
file does not exist. The opposite of LBYL.

159

Yet Another Python Book, Release 0.5beta

Git
A distributed version control system. It is used to track changes in source code
during software development. It was created by Linus Torvalds in 2005 to manage
the development of the Linux kernel.

GitHub
A web-based hosting service for version control using Git. It is mostly used for
computer code. It offers all of the distributed version control and source code
management functionality of Git as well as adding its own features.

Guido van Rossum
The creator of Python. He started working on Python in the late 1980s, and it has
been in continuous development ever since. Guido was made the BDFL (Benevo-
lent Dictator For Life) of the Python Community, a title he held until he stepped
down in 2018.

Indentation
The spaces at the beginning of a line of code that indicate the block to which the
line belongs. In Python, indentation is used to define the structure of the code. For
example, all the lines of code that are part of a function should be indented by the
same amount. Identation is usually four spaces, or multiples thereof.

Interactive Development Environment (IDE)
A software application that provides comprehensive facilities to computer pro-
grammers for software development. An IDE normally consists of a source code
editor, build automation tools, and a debugger. A Python IDE will normally have
features specific to Python, such as easy access to the Python interpreter.

Interpreted Language
A programming language where statements are interpreted one at a time and ex-
ecuted as the program runs. For example, Python. Also Ruby, or Perl.

Interpreter
A program that reads and executes code. Python is an interpreted language, so
the Python interpreter reads and executes Python code.

LBYL
Stands for Look Before You Leap. A programming approach that suggests you
should check for required conditions before executing some code. For example,
you should always check that a file exists before trying to open it. The opposite of
EAFP.

Monty Python’s Flying Circus
A British sketch comedy television series featuring the comedy troupe Monty
Python that originally aired on the BBC from 1969 to 1974. Later more famous
for feature films including Monty Python and the Holy Grail, Life of Brian, and
The Meaning of Life.

Ni
A word used by the Knights Who Say Ni in Monty Python and the Holy Grail. The
Knights Who Say Ni are a group of knights who demand a shrubbery from King
Arthur. They are known for their frequent use of the word “Ni”. The word “Ni” has
since become a running joke in the Monty Python community.

PEP 8
Stands for Python Enhancement Proposal 8. PEP 8 is a style guide for Python code.

160 Glossary

Yet Another Python Book, Release 0.5beta

It was written by Guido van Rossum, Barry Warsaw, and Nick Coghlan in 2001. PEP
8 covers topics such as indentation, line length, and function naming.

Pragmatic Programmer
A book by Andrew Hunt and Dave Thomas that was published in 1999. It is a
guide to computer programming and software development that includes tips
and tricks for programmers. Every programmer should read it.

Pythonic
A term used to describe code that follows the conventions of the Python language.
Pythonic code is clean, readable, and concise. It is idiomatic Python code that takes
advantage of the language’s features and libraries.

PyCharm
A Python IDE developed by JetBrains. It is one of the most popular Python IDEs and
is used by many professional Python developers. PyCharm has many features that
make it easy to write, test, and debug Python code.

PyPi
The Python Package Index. It is a repository of software packages for the Python
programming language. There are thousands of packages available on PyPi that
can be installed using the pip package manager.

REPL
Stands for Read-Eval-Print Loop. A REPL is a simple interactive computer pro-
gramming environment that takes single user inputs (single expressions), eval-
uates them, and displays the result to the user. The Python interpreter is a REPL.

Semantic Error
An error in a program that makes it do something other than what the program-
mer intended. Semantic errors are difficult to find because they do not cause the
program to crash or produce an error message. Instead, they cause the program
to produce incorrect results.

Shrubbery
A small to medium-sized woody plant. In Monty Python and the Holy Grail, the
Knights Who Say Ni demand a shrubbery from King Arthur as a condition for
passing through the forest. The knights are very particular about the type of
shrubbery they want and are not satisfied with the first shrubbery King Arthur
brings them.

Snake Case
A naming convention where words are written in lowercase and separated by un-
derscores. For example, snake_case. In Python, snake case is used for variable
names and function names.

Source Code
The human-readable version of a computer program. Source code is written in a
programming language and must be translated into machine code before it can
be executed. The translation is done by a compiler or interpreter. Source code is
usually stored in plain text files.

Spam
A canned meat product made mainly from ham. It is also a running joke in the
Monty Python sketch “Spam”. In the sketch, a group of Vikings sing a chorus of

161

Yet Another Python Book, Release 0.5beta

“Spam, Spam, Spam, Spam, lovely Spam! Wonderful Spam!” to drown out other
conversation. The term “spam” has since been used to refer to unwanted email.

Syntax Error
An error in a program that occurs when the code does not follow the rules of the
programming language. Syntax errors are usually easy to find because they cause
the program to crash and produce an error message. Common syntax errors in-
clude missing parentheses, missing colons, and misspelled keywords.

VS Code
Visual Studio Code. A free source-code editor made by Microsoft for Windows,
Linux, and macOS. It includes support for debugging, embedded Git control, syn-
tax highlighting, intelligent code completion, snippets, and code refactoring.

WET
Stands for Write Everything Twice. A play on DRY, WET is a sarcastic way of saying
that you should not try to reuse code. It is not a good idea to write everything twice,
so you should always try to refactor code into reusable chunks such as functions.
Also “We Enjoy Typing”, or “Waste Everyone’s Time”. See also DRY.

162 Glossary

COLOPHON

This book was produced using the Sphinx Documentation Generator103. This in turn
uses a bunch of other Python packages that have all been made available by their de-
velopers. The theme is Sphinx {book theme}104.

The main font in the PDF version is Bitter. Some text is in Lato. The code samples are
in Cascadia Code.

The whole thing was cobbled together with PyCharm, with Git and GitHub keeping track
of things. GitHub Copilot105 has chipped in now and again.

The cover image shows a Reticulated Python and is taken from the 1911 Edition of the
Encyclopedia Britannica, which observes as follows. Who knew?

PYTHON, a genus of very large snakes of the family Boidae (see Snakes) in-
habiting the tropical parts of Africa, Asia and Australia. They differ from
the true boas (q.v.) with which they are often confounded by carrying a few
teeth in the premaxilla, by the double row of subcaudal shields and by the
possession of a pair of supraorbital bones. Most of them have pits in some of
the upper and lower labial shields.

Python reticulatus is the commonest species in Indo-China and the Malay Is-
lands; four upper labial shields on either side are pitted. It is, next to the Ana-
conda, one of the largest of all snakes, some specimens being known which
measured about 30 ft. in length. P. molurus, scarcely smaller, is the python
or rock-snake of India and Ceylon. The African species are much smaller, up
to 15 ft. in length, e.g. P. sebae of tropical and southern Africa and the beau-
tiful P. regius of West Africa. P. spilotes is the “carpet-snake” of Australia
and New Guinea. A small relative of pythons is Loxocemus bicolor of South
Mexico, the only New World example.

The giant pythons could no doubt overpower and kill by constriction almost
any large mammal, since such snakes weigh hundredweights and possess
terrific strength, but the width of their mouth—although marvellously dis-
tensible—has, of course, a limit, and this is probably drawn at the size of a
goat. Before a python swallows such large prey, its bones are crushed and
the body is mangled, into the shape of a sausage. The snake begins with the
head, and a great quantity of saliva is discharged over the body of the vic-
tim as it is hooked into the throat by the alternately right and left forward
motions of the distended well-toothed jaws. If for any reason a snake should
disgorge its prey, this will be found smothered with slime. Hence the fable
that they cover it with saliva before deglutition.

Most pythons are rather ill-tempered, differing in this respect from the boas.
They are chiefly arboreal, and prefer localities in the vicinity of water to
which mammals and birds, their usual prey, resort. They move, climb and
swim with equal facility. The female collects her eggs, sometimes as many
as one hundred, into a heap, round which she coils herself, covering them so

103 https://www.sphinx-doc.org/
104 https://sphinx-book-theme.readthedocs.io/
105 https://github.com/features/copilot

163

https://www.sphinx-doc.org/
https://sphinx-book-theme.readthedocs.io/
https://github.com/features/copilot

Yet Another Python Book, Release 0.5beta

that her head rests in the centre on the top. In this position the snake remains
without food throughout the whole period of incubation, or rather keeping
guard, for about two months.

164 Colophon

IMAGE CREDIT

The image of the VT100 terminal is taken from WikiMedia Commons106 and is made
available under a Creative Commons Licence107.

106 https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg
107 https://creativecommons.org/licenses/by/2.0/

165

https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg
https://creativecommons.org/licenses/by/2.0/

Yet Another Python Book, Release 0.5beta

166 Image Credit

CREDITS

Thanks are due to the following . . .

167

Yet Another Python Book, Release 0.5beta

168 Credits

INDEX

Aand (Boolean), 12Artificial Intelligence, 159

Bbackups, 4, 26base 2, 13beer, 2binary, 13BitBucket, 26Boole, George, 12Boolean, 12, 159Booleans, 11basics, 46

CCamel Case, 159Cheese Shop, 7, 159choice, 10coffee, 3, 33Compiled Language, 159computerhow it works, 15computer program, 9instructions, 9, 10Constant, 159Conventionsconstant identifiers, 49variable identifiers, 49CPU, 15

Ddenary, 13disk drive, 15DRY, 159Duck Debugging, 159

EEAFP, 159ErrorSemantic, 29

Syntax, 29Errors, 29

FFalse, 11file formats, 16first language, choosing, 6first programs, 31floating-point numbers, 11

GGit, 26, 160GitHub, 26, 160GitLab, 26Guido van Rossum, 160

Hhardware requirements, 19hexadecimal, 13

IIDE, 22, 25choosing, 22, 25colour schemes, 25, 32Customisation, 31customisation, 32customising, 25font size, 32PyCharm, 24Saving, 29settings, 32themes, 25VS Code, 23Indentation, 160Inputreading a float, 50reading a string, 50reading an integer, 50input statement, 50Integrated Development Environment,
22

169

Yet Another Python Book, Release 0.5beta

Interactive Development Environment
(IDE), 160Interpreted Language, 160Interpreter, 160

LLBYL, 160LinksOnline version, 1Linux, 19Linux Mint, 20Ubuntu, 20logic, 12logic operators, 12logical operators, 12

MmacOS, 19memory, 15Monty Python's Flying Circus, 160Monty Python's Flying CircusCheese Shop Sketch, 7Monty Python's Flying Circus: Par-rot Sketch, 12

NNi, 160non-volatile, 15not (Boolean), 12

Ooctal, 13Online version, 1operating system, 19choice of, 19operting systemLinux, 19macOS, 19Windows, 19or (Boolean), 12

PPEP 8, 160physical environment, 19, 32plain text, 16powers, 11Pragmatic Programmer, 161print statement, 51programmer, behaviour and habits of,
3, 32, 33Programmingphysical environment, 33

tools, 32programming languages, 5programming, nature of, 3Programs7times.py, 73, 74any_times.py, 74–76binary.py, 143exam_result.py, 64, 65, 67f2c.py, 69, 70hello.py, 30, 31hello_age.py, 31hello_name.py, 30, 31password.py, 83pythagoras.py, 84school_bus.py, 53string_check.py, 80wc.py, 144, 145PyCharm, 24, 161PyPi, 7, 161Pythonbackground, 6exiting interpreter, 22features, 7finding version, 22getting, 21installing, 21interactive, 7interpreter, 7, 22Monty, 7Python Interpreter, 22starting interpreter, 22version 2, undesirability of, 21Pythonic, 161

Qquotation marks, 31

RRAM, 15repetition, 10REPL, 161Requirementshardware, 19

SSemantic Error, 29, 161sequence, 10setting up, 19Shrubbery, 161Snake Case, 161Source Code, 161Spam, 161

170 Index

Yet Another Python Book, Release 0.5beta

Statementsinput, 50print, 51Syntax Error, 29, 162

Ttext files, 16Three Simple Programs, 30True, 11truth tables, 12types, 10

UUnicode, 13

Vvalues, 10version control, 26Visual Studio Code, 23volatile, 15VS Code, 23, 162

WWET, 162Windows, 19windows subsystem for linux, 20WSL, 20

Index 171

	Greetings!
	About this Book
	Design Decisions
	Programming
	Assumptions
	Programming Languages
	Python

	Takeaways

	Before We Start
	Instructions
	Values and Types
	True and False
	Binary
	How Computers Work
	Text Files
	Takeaways

	Getting Stuff Together
	A Note on Operating Systems
	Getting Python
	The Python Interpreter

	Choosing and Getting an IDE
	Visual Studio Code
	PyCharm
	Picking and Choosing

	Other Tools
	Takeaways

	Getting Started
	Three Programs
	Programming in a Good Place
	Tools of the Trade
	The Physical Side

	Takeaways

	Somewhere to Start
	Creating Values
	Values and Types
	Investigating Integers
	Doing the Maths
	Precedence
	More Operators

	Focus on Floats
	Conversions

	String Theory
	Boolean News
	Boolean Expressions

	Values and Variables
	Input and Output
	Getting Input
	Displaying Results

	Takeaways

	When Things Go Wrong
	A Simple Error
	Handling an Exception
	Another Exception
	Exceptions are Good
	More Errors
	Takeaways

	Staying in Control
	Values in Range
	Flow of Control
	More Choices
	Nesting
	When Not to Test

	Non-Linear Programs
	Repeating Yourself
	Determinate Loops
	Indeterminate Loops
	More Cunning Loops

	Pulling It Together
	Takeaways

	The Wheel. Do Not Reinvent
	The Standard Library
	A Module Example
	Importing

	The Python Package Index
	Takeaways

	Keeping it Simple
	Code is Crafted
	Code is Read
	Programming is a Team Effort
	Multi-tasking is Difficult
	Don’t Repeat Yourself

	Code Reuse
	Functions Explained
	A Simple Game
	Thinking It Through
	Tracking the Player
	Placing the Treasure
	Tracking the Distance
	The Endgame
	Final Tweaks

	Using Functions
	Creating Modules

	Takeaways

	Collecting
	Looking at Lists
	A List Example
	Working with Lists
	List Order
	List Slices
	Finding Elements
	Looping Lists
	Copying Lists

	Leaving Lists

	Trying Tuples
	Seeking Sets
	Discovering Dictionaries
	Takeaways

	Fun with Files
	Finding Files
	Reading Files
	Newlines
	Line-by-line

	Writing Files
	Writing Exceptions
	Writing Data

	Takeaways

	Those Little Details
	Ternary
	F-Strings
	Command-Line Arguments
	None
	Passing
	Custom Exceptions
	List Comprehensions
	Takeaways

	The End of the Book
	Programming, not Python
	Keep Up To Date
	Keep Sharp
	Important Reading
	AI and Programming
	Takeaways

	Glossary
	Colophon
	Image Credit
	Credits
	Index

